
Informatics 2 – Introduction to Algorithms

and Data Structures

Tutorial 10: Register machines and computability

(SOLUTIONS)

1. (a) Design a flowchart for a register machine that tests whether ‘A < B’.

(b) Design a machine that computes ‘A div B’ and ‘A mod B’ (assuming B is non-
zero), storing the results in C and D respectively.

Here, for clarity, we have assumed given some very simple components. ‘C=0’
and ‘D=0’ do what they say; ‘B ← D’ copies the value of D to B, setting D to 0
in the process.

(c) Show that if both f : N→ N and g : N→ N are RM-computable, then so is their
composition h defined by h(n) = g(f(n)).

Saying f is RM-computable means that there’s a register machine F such that,
for any n ∈ N, if F is run on an initial state with A = n, it will terminate in
a final state with A = f(n). Likewise, g is RM-computable if there’s a machine
G doing the same job for G. Given such machines, we may simply plug them
together by connecting the exit point of F to the entry point of G. (Strictly

1



speaking, we first need to ensure F and G have the same number of registers,
which we may do by adding extra (unused) registers to F or G as required.)

the resulting machine will compute the composition h as required.

(d) Show that if e, f, g : N → N are all RM-computable, then so is the function k
defined by

k(n) = if e(n) = 0 then f(n) else g(n)

Suppose e, f, g are computed by register machines E,F,G respectively. Let r be
two more than the maximum number of registers of E,F,G, and expand E,F,G
to equivalent machines E′, F ′, G′ with r registers.

Our machine for computing k will work as follows, given an initial state with A
= n.

� Copy n from A into the two spare registers, then copy one of them back to
A.

� Use E′ to compute e(n) (in A), then use ‘A?’ to branch on whether e(n) = 0.

� On the 0 branch, copy the value of n back into A, then apply F ′.

� On the + branch, copy n back into A and apply G′.

� Merge the two exit points into one.

2. (a) What about the predicate ‘the machine coded by m, when applied to the inputs
coded by n, halts within k steps’? Would you expect this to be RM-decidable?
Informally justify your answer.

This is certainly decidable. Given m, n and k, it is a purely mechanical task to
simulate the execution of machinem on input n for up to k steps. This simulation
will complete within finite time, and by then we’ll know if the computation in
question halts within k steps.

So the given predicate is decidable by a mechanical procedure. By an informal
appeal to Church’s thesis, then, we expect it to be decidable by a register machine.
(Alternatively, one could explicitly construct such a machine and show it did this,
but life is too short.)

(b) Let T be the set of all codes for register machines that compute some total func-
tion N→ N. It would be nice if there were some register machine that could tell
us, given any m,m′ ∈ T , whether the machines represented by m and m′ gave
rise to the same total function. Show however that no such machine is possible.

Suppose such a machine existed. Here’s how we could use it to solve the halting
problem.

� Given any m (coding a register machine) and n (coding a memory state), we
can use our solution to (a) to construct a machine Pm,n that computes the
function

k 7→ (1 if machine m on input n halts within ≤ k steps, 0 otherwise)

� This machine Pm,n will have a certain numerical code pm,n. What’s more,
since the construction of Pm,n is uniform in m and n, it will be possible to
compute pm,n given m and n.

� The trick is to note that:

– for any m,n, pm,n is the code for a machine computing a total function,
i.e. pm,n ∈ T ,

2



– this total function will be the constant zero function λk.0 if and only if
‘m applied to n’ never halts.

So if we had a machine D that tested whether two codes in T yield the same
total function, So we could solve the halting problem as follows: Let q be
a fixed code for some simple machine that computes λk.0. Now given m,n,
compute pm,n as above, then use D to test whether pm,n and q represent the
same total function.

3


