
Informatics 2 – Introduction to Algorithms

and Data Structures

Solutions for tutorial 9

1. (a) We will show that Sat is in NP, 3-Sat can be verified exactly the same way. Our
“solution/certificate” for a Sat instance φ = C1 ∧ . . . Cm will be an assignment
to the logical variables {x1, . . . , xn} - note this can be represented as a binary
string of length n (so polynomial in the size of the input formula φ). Let the
assignment be b ∈ {0, 1}n, with bi being the assignment for variable xi.

To do the verification against φ, our algorithm needs to consider each clause Cj in
turn, and then for each of the literals in Cj , check whether it is satisfied against b
- as long as one literal is satisfied by b, then Cj is satisfied. It takes O(|Cj |) time

to check Cj . To check all Cj are satisfied takes O
(∑m

j=1 |Cj |
)

in total, which is

polynomial-time, in fact linear, in the size of our input instance φ.

Hence Sat, 3-Sat are both in NP.

(b) We have an instance φ = C1∧. . .∧Cm of Sat, over boolean variables {x1, . . . , xn}.
We will assume that no Cj includes any complementary pair of literals xi, x̄i, as
any such clause is trivially satisfied (and can be removed from the list of clauses
without changing the Satisfiability). These can be easily detected (and clauses
removed) in polynomial-time.

For any clause Cj such that |Cj | = 1 (say Cj is `j,1), we will create two dummy
variables yj,1, yj,2, and then we will replace Cj by the following four clauses:

Cj,1 = (`j,1 ∨ yj,1 ∨ yj,2) Cj,2 = (`j,1 ∨ ¯yj,1 ∨ yj,2)

Cj,3 = (`j,1 ∨ yj,1 ∨ ¯yj,2) Cj,4 = (`j,1 ∨ ¯yj,1 ∨ ¯yj,2)

Observe that regardless of which 0/1 values are given to yj,1, yj,2 the “dummy
literals” will be both 0 in one of the four clauses, enforcing `j,1 to be satisfied,
which is what we require.

For any clause Cj such that |Cj | = 2 (say Cj is (`j,1 ∨ `j,2)), we will create one
fresh dummy variable yj , and replace Cj by the following two clauses:

Cj,1 = (`j,1 ∨ `j,2 ∨ yj), Cj,2 = (`j,1 ∨ `j,2 ∨ ȳj).

For any clause Cj such that |Cj | = 3, we leave that clause as it is.

Finally, consider any clause Cj with |Cj | > 3. For these clauses, we need to
add |Cj |−3 new dummy variables yj,1, . . . yj,|Cj |−3. We then replace Cj with the
following clauses Cj,1, . . . , Cj,|Cj |−2 defined as follows:

Cj,i =


(`j,1 ∨ `j,2 ∨ yj,1) i = 1

(ȳj,i ∨ `j,i+1 ∨ yj,i+1) i = 2, . . . , |Cj | − 3
(ȳj,|Cj |−2 ∨ `j,|Cj |−1 ∨ `j,|Cj |) i = |Cj | − 2
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Then assignment b will satisfy Cj ⇔ we can extend this assignment to assign
values to all the dummy variables to satisfy all of these |Cj | − 2 clauses.

Notice that for this |Cj | > 3 case, we will add ≤ |Cj | variables, and we also
expand the size of the clausal representation by at most a factor of 3 (counting
total number of literals, not individual clauses).

We have created an instance of 3-Sat of total size at most 3 times our original
problem. Each of the conversions to 3-CNF are methodological, and can be done
in time linear in the size of Cj . Hence Sat ≤P 3-Sat.

2. In this question we consider whether the decision version (Coin) of the “coin changing”
problem is in P, and/or in NP.

(a) The proposed algorithm to solve the decision version of (Coin) suggests running
the dynamic programming algorithm to evaluate the minimal number of coins
for value v in the coin system {c1, . . . , ck}. However the use of the DP algorithm
as a starting point means it can’t be polynomial time.

Numbers entered as input parameters to a computational problem are written
in binary format (or some related format such as decimal, or hexadecimal . . .
but never unary, that’s not sensible). So for example, the value v = 25 = 32
is written with 6 bits as 100000, the value v = 210 = 1024 is written with 11
bits as 10000000000, and the value v = 220 = 1048576 is written with 21 bits as
10000000000.

The length of these representations (whether the original decimal, or the slightly
longer binary) is tiny in comparison to the *value* of the number.

When we run the dynamic programming for coin-changing, we create a table of
dimensions (k + 1) · (v + 1), and the loop to fill the table is Θ(k · v).

0 1 . . . . . . . . . v

∅ 0 0 0 0 0 0
{c1} · · . . . . . . . . . ·

...
...

...
...

...
...

...
...

...
...

...
...

...
...

{c1, . . . , ck} · · . . . . . . . . . ·

But this table size (and running-time) is exponential in lg(v). If we’d had v = 220,
the table would have had dimensions 1048576 · (k + 1), for example. Hence this
approach can’t give us a polynomial-time algorithm.

Algorithms which are polynomial-time in “everything except the numbers” (like
this one) are sometime called pseudopolynomial.

(b) We are next asked to consider whether it is possible to verify a “certificate” of
Coin(c1, . . . , ck; v;h) being True in polynomial-time (without any directive of
the algorithm for checking).

This question is a bit more nuanced. We have been talking about a “collection
of coins” in referring to a solution for Coins, with the default being a multiset.

Option 1: If we represent the “collection of coins” as a multiset, then the
implication is that we would list the same coin multiple times. This causes a
problem for input data c1, . . . , ck; v where the target value v is much greater
compared to any of the coin sizes. For example, considering {1, 5} as our coin
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set, but some very large v = 5n (say), we would need 5n−1 coins in any solution
to make v,

This number of coins is exponential in the size of our binary representation for v
(which only requires dn · lg(5)e bits to input). Hence even before considering the
checking of the multiset, its representation prohibits it from being polynomial-
time verifiable.

Option 2: However, we have been ambiguous about how we represented our
multiset of coins for the solutions to coin-changing. A more appropriate way to
represent the solutions would be a list of pairs (ci, ni), i = 1, . . . , k, with ni being
the number of ci coins to be taken in the solution.

Note that ni ≤ v for every i (at a minimum) so with this representation, then the
size of a “certificate” becomes polynomial in the size of the input parameters.

Then we need to do the verification. This is done by an arithmetic calculation
where we multiply ci × ni (multiplication is quadratic in the lg-size of the two
numbers) for each i, and then add them together (linear in the lg-size of the
number being added).

So the checking is also polynomial-time with this more sensible representation
for solutions.

3. We are considering the derandomization algorithm for 7
8m expected number of satisfied

clauses for 3-CNF that was presented in Lecture 26. The “Live Discussion” for week
6 has an example of this process being executed on a specific Φ.

(a) We construct a specific assignment to satisfy Y ≥ 7
89, ie at least 8, of the clauses

in the following Φ, where Y is the r.v. measuring the number of satisfied clauses.
We have 4 logical variables, so our assignments are from {0, 1}4.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3) ∧
(x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4) ∧
(x̄1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x4) ∧ (x̄1 ∨ x3 ∨ x4).

variable x1: We first consider variable x1, and the two options x1 ← 0 and
x1 ← 1. To compute Exp0 = E[Y | x1 ← 0], the expected number of satisfied
clauses conditional on x1 being 0, we notice that Φ has

• 4 clauses containing the negative literal x̄1
• 3 clauses containing the positive literal x1
• 2 clauses not involving this variable at all.

By setting x1 ← 0, we satisfy the x̄1 clauses immediately (with probability 1), we
delete the x1 literal from the clauses that had contained it (henceforth they only
have two “active” literals and their probability of being satisfied drops from 7

8
to 3

4 ) . . . and the probability of the two uninvolved clauses being satisfied remains
at 7

8 . This gives

E[Y | x1 ← 0] = 4 + 3
3

4
+ 2

7

8
= 8.

To compute Exp1 = E[Y | x1 ← 1], we just need to note that the circumstances
for the positive literals (3 of these) and negative literals (4 of these) are reversed,
hence the value Exp1 can be computed as

E[Y | x1 ← 1] = 3 + 4
3

4
+ 2

7

8
= 7.75.
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The rules of the derandomization algorithm require us to choose the assignment
to x1 which maximizes the expectation, hence we assign x1 ← 0. Propagating
this to Φ, we get:

Φ′ = (x1∨ x2 ∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧
(x1∨ x̄2 ∨ x̄3)∧ (x1∨ x̄2 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4)∧
(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4)

We already have 4 clauses that are definitely satisfied.

Variable x2: Next we consider literal x2, and the two options x2 ← 0 and
x2 ← 1. We only have five “active” clauses to consider at this point, three of
size 2 and two of size 3.

To consider the effect of setting x2 ← 0, we notice that x2 is negative in 3 of the
remaining clauses, and positive in one length-2 clause and positive in one length-
3 clause. By setting x2 ← 0 we immediately satisfy the 3 clauses containing x̄2
(with probability 1) regardless of their length, but we need to delete the positive
literal x2 from the two active clauses which contain it . . . then one clause ends up
with a single remaining literal, with the probability of being satisfied dropping
to 1

3 and the length-3 clause which contains x2 will reduce to length 2, and the
probability of being satisfied drops from 7

8 to 3
4 . Hence

E[Y | x1 ← 0, x2 ← 0] = 4 + 3 + 1
1

2
+ 1

3

4
= 8.25,

where we use bold to indicate that the initial term 4 is from the previously
satisfied clauses.

For E[Y | x1 ← 0, x2 ← 1], I will just observe that in the uniform random
model for assignments, the assignments to x2, x3, x4 (conditional on our prior
decision x1 ← 0) are equally split between x2 ← 0 andx2 ← 1. Hence,

E[Y | x1 ← 0] =
E[Y | x1 ← 0, x2 ← 0] + E[Y | x1 ← 0, x2 ← 1]

2
.

The value of E[Y | x1 ← 0] was 8 and the value of E[Y | x1 ← 0, x2 ← 0] is 8.25
. . . given the equation above, we don’t need to compute E[Y | x1 ← 0, x2 ← 1]
to know it is less than E[Y | x1 ← 0, x2 ← 0].

Therefore we choose x2 ← 0. Propagating this to Φ, we get:

Φ′ = (x1 ∨ x2∨ x3)∧ (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x3)∧
(x1∨ x̄2 ∨ x̄3)∧ (x1∨ x̄2 ∨ x4)∧(x2∨ x3 ∨ x̄4)∧
(x̄1 ∨ x̄3 ∨ x̄4)∧ (x̄2 ∨ x̄3 ∨ x4)∧ (x̄1 ∨ x3 ∨ x4)

We now have 7 clauses definitely satisfied, and just 2 remaining clauses to con-
sider.

Variable x3: Next we consider literal x3, and the two options x3 ← 0 and
x3 ← 1. We only have two “active” clauses to consider at this point, one of size 1
and one of size 2. Both of these clauses have x3 as a positive literal.

To consider the effect of setting x3 ← 0, we note that this will cause clause 1 to
fail, and will reduce the number of active literals of clause to drop to 1. Hence
the expectation conditional on fixing x3 as 0 will have little except the already
guaranteed 7:

E[Y | x1 ← 0, x2 ← 0, x3 ← 0] = 7 + 0 + 1
1

2
= 7.5.
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The effect of fixing x3 ← 1 is obviously to make both “active” clauses be satisfied,
giving a overall value of 9.

Hence we choose x3 ← 1.

At this point we have already satisfied a l9 clauses.

Hence we may choose either value for x4, doesn’t matter which.

Overall assignment is x1 ← 0, x2 ← 0, x3 ← 1, x4 ∈ {0, 1}.
(b) If we are are to attempt the same process on CNF formulae which are not CNF,

there first thing to do is to observe is that the initial expectation calculation
E[Y ] = 7

8m no longer fits. We can still use linearity of expectation, however - we
need to compute the number of clauses mk of length k in Φ, for every k = 1, . . . , n.
Then the expected number of satisfied clauses E[Y ] is

E[Y ] =

n∑
k=1

mk(1− 1
2k

)

After that, we can carry out a derandomization which will be guaranteed to build
a specific assignment which satisfies at least as many clauses as E[Y ]. As in the
3-CNF cases, we should examine the xi in some order, choosing a fixed value for
some xi at each step based on which gives that larger conditional expectation.

While calculating the E[Y | x1 = b1, . . . , xj = bj ] values during this process,
we will be referring to a Φ′ formula which will have clauses of varying sizes.
Therefore, our calculations will need to add values (1 − 1

2k
) for k > 3 - how-

ever, it doesn’t make the calculations any less feasible than for 3-CNF, and the
derandomization can still be carried out in polynomial-time.

The only difference is that we won’t necessarily get an assignment satisfying ≥
7
8m clauses, because the initial expectation might not have been as high as that
(especially if Φ has a lot of 1-literal and/or 2-literal clauses).

4. Relationship between Vertex Cover and Independent Set problems.

• I is an Independent Set of G if for every u ∈ I, v ∈ I \ {u}, that (u, v) /∈ E.

• K is a Vertex Cover of G if for every e = (u, v) ∈ E, either u ∈ K or v ∈ K.

(a) proof: By definition, the set I is an Independent set if (and only if) for every
u ∈ I, v ∈ I \ {u}, that (u, v) /∈ E.

This is the case if and only if for every (u, v) ∈ E, at least one of u, v is not in I.

This is the case if and only if if for every (u, v) ∈ E, either u ∈ V \I or v ∈ V \I.

This is the case (by definition) if and only if V \ I is a Vertex Cover for G.

Implications for the two decision problems: The Independent Set Deci-
sion question asks whether G has an Independent Set I of size |I| ≥ k. As shown
above this is the case if and only if G has a Vertex Cover V \I such that |I| ≥ k.
However, |I| ≥ k ⇔ |V \ I| ≤ (n− k).
Therefore the equivalent statement is that G has a Vertex Cover K such that
|K| ≤ (n− k).

The equivalence between the two problems gives a very straightforward “reduc-
tion” from Independent Set to Vertex Cover, and vice versa. This is a
really simple reduction, where the graph stays exactly the same, and the only
change is to the size parameter (converting via n− k in both reductions).
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Therefore, Independent Set is NP-complete⇔Vertex Cover is NP-complete.

It’s quite rare to have “reductions” which work in both directions in fact.

Note that we gave a proof of Independent Set being NP-complete in Lecture
25, conditional on 3-SAT being NP-complete. The relationship demonstrated in
this question allows is to further infer that Vertex Cover is NP-complete.

(b) The relationship proved in (a) tells us that the Decision versions of the Inde-
pendent Set and Vertex Cover are equivalent from the point of view of
polynomial-time computation. If we have an algorithm to solve one of these
problems, it can solve the other.

However, suppose we have an approximation algorithm for one of the problems,
say Vertex Cover, and suppose this algorithm has an approximation ration
of α, for α > 1. This means that the algorithm is guaranteed to return a value `
satisfying ` ≤ α · OPTV C(G), where OPTV C(G) is the minimum size of a VC
for G.

Let’s now consider whether we can infer anything about the value n − `, when
interpreted in relation to the optimum Independent Set for G (which we know is
has size n−OPTV C(G)).

The approximation guarantee for Vertex Cover guarantees that when we consider
the implications for Independent Set, we find

n− ` ≥ n− α ·OPTV C(G) = (n−OPTV C(G))− (α− 1)OPTV C(G)

What we would really like n−` ≥ 1
β (n−OPTV C(G)) for some β > 1 (preferably

with some nice relationship to the α), however the extra −(α−1)OPTV C(G) will
make this impossible.

As a concrete example, suppose our α of the Vertex Cover approximation is
α = 2. Then when we take n− ` for Independent Set, we have the bound

n− ` ≥ (n−OPTV C(G))−OPTV C(G)

However, there may be graphs where OPTV C(G) is n/2 or even greater. In
that case, the right-hand side above will be drastically affected by the extra
−OPTV C(G), and n− ` may be arbitrarily close to 0.

Hence a nice constant approximation for Vertex Cover will not necessarily con-
verted into a constant (or any!) approximation for Independent Set, or vice
versa.

The issue here is the − in the conversion between the two problems: subtraction
does not preserve approximation.

5. 3-Col problem for a given input graph G = (V,E).

(a) The first question asks us to show that 3-Col belongs to NP. Assume the 3
colours are G, R, B.

Our “certificate” for this problem is simple: a list of vertex-colour pairs, one for
each vertex v ∈ V . This is Θ(n) wrt to the size of the vertex set.

This can be checked in Θ(n + m) as follows, assuming we have access to an
Adjacency list structure Adj, with Adj[v] being the list of adjacent vertices to v.

To start our checking, we initialise two arrays of length n, array C (entries
initialised to ”-”) and array N (entries initialised to 0).
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We scan the list of vertex-colour pairs, and when reading each (v, c), we update
C[v]← c, N [v]← N [v] + 1, until the entire sequence of pairs is read.

Next we check through the array N in O(n) time to make sure every cell has
value 1. If not, we return False.

Then we iterate through the Adjacency list: for each node j, we iterate through
its list of neighbours w, checking that C[v] 6= C[w]. If any of these checks fail,
we return False. The entire Adjacency list can be checked in Θ(n+m) time.

if we finish all the checks without finding a violation, return True.

(b) We refer to the diagram in discussing this.

Consider the xi, x̄i nodes for any i = 1, . . . , n. These nodes are set up to form a
triangle with the B node of the “central triangle”. This means that neither xi
nor x̄i can take the same colour as B. Also, the edge connecting (xi, x̄i prohibits
the opposing literals form taking the same colour: so we are guaranteed that xi
is either “T ’s colour” (green in pictures) or “F ’s colour” (red in pictures), and
that x̄i has the other colour. Note that either of these is possible, there is no
bias.

This encodes the two possible “truth assignments” for xi.

There is the same triangle set-up (with the same B) for every xi; hence every
proper 3-colouring of the overall graph will encode some truth assignment for the
logical variables, and all truth assignments are feasible.

(c) To prove this correspondence, it is helpful to label the nodes of the 6-vertex
gadget (except the rightmost one, which is fixed to green/“T ’s colour”).
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We will show that we can extend a proper 3-colouring (on the truth-setting
subgraph) to a proper 3-colouring including these 6 vertices ⇔ at least one of
the literals L1, L2, L3 is green (“T ’s colour”).

IF: First of all suppose that at least one of L1, L2, L3 is green.

If L1 is green, then we can set c(X) = F (red), c(Z) = T (green), c(Y ) = B
(blue) to satisfy the left triangle, and it also is proper for the edges (L1, X)
and (L2, Y ), regardless of the truth value for L2 (as the adjacent node Y is
getting blue). We can then set c(W ) = F , c(U) = B and these will work for the
right triangle regardless of L3’s value, as U is getting blue.

If L2 is green then we can make an exactly symmetric argument, just swapping
the assignment to X with Y .

If L3 is the only green literal, then in the left triangle, we are forced to use
colours T/green and B/blue on vertices X and Y . Then Z is forced to be F/red
. . . and subsequently W is forced to be B/blue. Then in the right triangle we
have a green and a blue and U is forced to be red . This is consistent with L3

being T/green, so we have a 3-colouring.

ONLY IF: Suppose that none of at least one of L1, L2, L3 is T/green

We will derive a contradiction to the existence of a 3-colouring. The initial
reasoning follows the argument when we know both L1 and L2 are F/red,, with
the conclusions that vertices X and Y use T/green and B/blue, that Z must
be F/red, W must be B/blue, and U is forced to be red.

However, L3 is not true, so also has the colour F/red, and hence we have an
impossible constraint along edge (L3, U).

We have shown that if all 3 literals are False, then there cannot be a 3-colouring
of the ”truth-setting graph” with the Cj gadget attached.

(d) We hook-up a “6-vertex gadget” (with fresh vertices) for each clause Cj of the
formula Φ. Note that we end up with 3 + 2n nodes for the “truth setting”
subgraph of (b), plus 6 fresh nodes for every clause Cj , so we have 3 + 2n+ 6m
nodes in total, which guarantees this is a polynomial-sized reduction.

Mary Cryan, 10th March 2025
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