
Introduction to Algorithms and Data Structures

Lecture 27: Dealing with NP-completeness
(Approximation algorithms)

Mary Cryan

School of Informatics
University of Edinburgh

IADS – Lecture 27 – slide 1

Implications of NP-complete status

When prove a problem is NP-complete, we no longer expect to be able
to design polynomial-time algorithms to generate exact solutions (to
the Decision problem or to an Optimization version)

What are our options?

I Heuristic methods (“rules of thumb”) that might not guarantee good
results, but behave well in practice.

I Might there be a polynomial-time algorithm to search for an approximate
solution rather than an exact one? (today)

I Brute-force methods that run in exponential-time (L28)

I Recursive backtracking (L28)

We might use randomness . . . and may later want to de-randomize.

Mostly we are dealing with the optimization version of the decision problem.

IADS – Lecture 27 – slide 2

What is an approximation algorithm?

For an optimization problem, we ask questions of the form

“For a given instance I of the problem, what is
the value of a best solution y for that instance?

best will usually either be

I max-valued (eg Ind.Set, solutions being Ind.Sets.) or

I min-valued (eg Edit distance, solutions being alignments).

Definition: Consider some optimization problem OPT where for a given instance
I, and the set of feasible solutions y , OPT(I) is the cost/value of the optimum y .

An algorithm A is said to be an α-approximation algorithm for OPT if for every
instance I, the algorithm returns a value A(I) satisfying

A(I)

{
≤ α · OPT(I) if OPT is a minimization problem
≥ α−1 · OPT(I) if OPT is a maximization problem

IADS – Lecture 27 – slide 3

Polynomial-time approximation: examples

Vertex Cover Will see a simple algorithm which gives a 2-approximation.

MAX 3-SAT Will see a randomized algorithm (and a derandomization) that
gives a 8

7 -approximation for satisfying a max number of clauses.

note: The α-value is called the approximation ratio of the algorithm.

IADS – Lecture 27 – slide 4

Vertex Cover (minimization)

Definition
Given an undirected graph G = (V ,E), a subset V ′ ⊆ V is a Vertex Cover
(VC) for G if every edge e ∈ E has at least one endpoint in V ′.

Vertex Cover: Determine the size of the minimum cardinality VC for G .

Optimum VC has size 4 (c , 1 of {d , g }, 2 non-adjacent vertices of {a, b, f , e}).

IADS – Lecture 27 – slide 5

2-approximation for Vertex Cover

The decision version of Vertex Cover (is the minimum VC of size ≤ k)
is NP-complete ⇒ we do not believe that the optimization Vertex Cover
problem can have a polynomial-time algorithm.

Here is an approximation algorithm:

Algorithm Approx-Vertex-Cover(G = (V ,E))

1. C ← ∅
2. E ′ ← E

3. while E ′ 6= ∅
4. do take any edge (u, v) ∈ E ′

5. C ← C ∪ {u, v } // add both u and v to the cover

6. Remove every edge g with u or v endpoint from E ′

7. Print(“There is a VC of size ”, |C |)

IADS – Lecture 27 – slide 6

2-approximation for Vertex Cover: example

We end up with a VC of size 6.

IADS – Lecture 27 – slide 7

2-approximation for Vertex Cover

Algorithm Approx-Vertex-Cover(G = (V ,E))

1. C ← ∅
2. E ′ ← E

3. while E ′ 6= ∅
4. do take any edge (u, v) ∈ E ′

5. C ← C ∪ {u, v } // add both u and v to the cover

6. Remove every edge g with u or v endpoint from E ′

Why a 2-approximation?

I Compare to some unknown minimum vertex cover C∗.

I Consider the set F of all edges chosen by line 4 (the “purple edges”).

I Each f ∈ F must have one endpoint in C∗.
For f , f ′ ∈ F , f 6= f ′, f and f ′ share no endpoints. So |C∗| ≥ |F |.

I The alg chooses each f to have no overlapping endpoints with the earlier
purple edges. So |C | = 2|F |. Hence |C | ≤ 2|C∗|.

IADS – Lecture 27 – slide 8

Optimization/search problem Max 3-SAT

Max 3-SAT: Given a 3-CNF formula φ = C1 ∧ . . . ∧ Cm over the variables
{x1, . . . , xn}, determine the maximum number of clauses k such that there is an
assignment of binary values to {x1, . . . , xn} that makes k clauses satisfied.

3-SAT is NP-complete ⇒ we do not expect a polynomial-time algorithm to
exactly solve the Max 3-SAT problem. Why?

We will design an algorithm to find an assignment satisfying ≥ 7
8 ·m clauses.

I Will show we are guaranteed there is some assignment satisfying ≥ 7
8 ·m

clauses ⇒ get an 8
7 -approximation algorithm for Max 3-SAT.

I In fact, for optimizing the value, we could just output 7
8 ·m without

checking anything . . . this would already be a 8
7 -approximation algorithm.

I Search problem: find an assignment to satisfy a high number of clauses.

I We assume/require a 3-CNF formula where each clause Cj has exactly 3
literals (on different logical variables). Need this condition.

IADS – Lecture 27 – slide 9

Uniform Random Assignment and Max 3-SAT

We are given φ = C1 ∧ C2 ∧ . . . ∧ Cm, and each of the Cj is (`j,1 ∨ `j,2 ∨ `j,3)
for three literals over {x1, . . . , xn} (for example, (x4 ∨ x̄1 ∨ x̄9)).

want: assignment to the {x1, . . . , xn} which satisfies a high number of clauses.

Consider a single clause Cj = (`j,1 ∨ `j,2 ∨ `j,3)

I Cj is satisfied if at least one of its literals are satisfied: `j,1 or `j,2, or `j,3

I Cj will fail to be satisfied only if all its literals are False.

I Suppose we generate a uniform random assignment (uar) to the logical
variables x1, . . . , xn (each xi gets 0/1 with probability 1

2).

I The probability that Cj is not satisfied is exactly 1
2 ·

1
2 ·

1
2 , ie, 1

8 .
I This is where we use the assumption that each clause has 3 literals

over different xi .
I The probability that Cj is satisfied is exactly 7

8 .

The expected number of clauses of φ satisfied by a uar assignment is 7
8m.

IADS – Lecture 27 – slide 10

Uniform Random Assignment and Max 3-SAT

φ = C1 ∧ C2 ∧ . . .∧ Cm

Let Yj be the 0/1 random variable that is 1 if Cj is satisfied.

Then Y =
∑m

j=1 Yj is the number of clauses that are satisfied by the assignment.

The expected number of clauses E[Y] satisfied by a uar assignment is 7
8m (by

linearity of expectation)

I Must be at least one assignment to x = x1 . . . xn which satisfies ≥ 7
8m

clauses.

I If all assignments to the variables satisfied < 7
8m clauses, the

expected number could not be 7
8m.(under uar random assignment,

the expectation is the average over all {0, 1}n).

I Näıve (randomized) algorithm: generate a random assignment b ∈ {0, 1}n

until we achieve ≥ 7
8m satisfied clauses.

IADS – Lecture 27 – slide 11

De-randomized ≥ 7
8m algorithm for Max 3-SAT

φ = C1 ∧ C2 ∧ . . .∧ Cm

Y =
∑m

j=1 Yj the number of clauses that are satisfied by the uar assignment.

E[Y] =
1

2n

∑
x∈{0,1}n

m∑
j=1

Yj

=
1

2n−1

∑
x∈{0,1}n−1

m∑
j=1

(
(Yj |x1=0)

2 +
(Yj |x1=1)

2

)
= E[Y |x1=0]

2 + E[Y |x1=1]
2

Observe: If E[Y] ≥ 7
8m, then either E[Y | x1 = 0] ≥ 7

8m or E[Y | x1 = 1] ≥ 7
8m.

Idea: Compute E[Y | x1 = 0] and E[Y | x1 = 1] (how?), compare values, fix x1
to have that maximizing binary value . . . iterate.

IADS – Lecture 27 – slide 12

De-randomized ≥ 7
8m algorithm for Max 3-SAT

“Method of conditional expectations”

Algorithm Greedy-3-SAT(φ, n,m)

1. for i = 1, . . . , n

2. Compute Exp0 ← E[Y | x1 = b1 . . . xi−1 = bi−1, xi = 0]

3. Compute Exp1 ← E[Y | x1 = b1 . . . xi−1 = bi−1, xi = 1]

4. if Exp0 ≥ Exp1

5. then bi ← 0; Update φ by fixing xi = 0

6. else bi ← 1; Update φ by fixing xi = 1

7. return b

Computing the Exp0,Exp1 values:

I After fixing b1, . . . , bi−1, φ(b1, . . . , bi−1) will have some already satisfied clauses,
some already failed clauses, and some unresolved clauses of lengths 1, 2, and 3.

I Evaluate Exp0 by setting xi = 0. For any Cj with x̄i ∈ Cj , E[Yj | . . . xi = 0] = 1.
For any Cj with xi ∈ Cj , E[Yj | . . .] drops from 7

8
→ 3

4
, from 3

4
→ 1

2
, or 1

2
→ 0.

I Evaluation of Exp1 is symmetric.

IADS – Lecture 27 – slide 13

De-randomized ≥ 7
8m algorithm for Max 3-SAT

At every iteration of Greedy-3-SAT, we have

E[Y | x1 = b1 . . . xi−1 = bi−1] = E[Y |x1=b1...xi−1=bi−1x1=0]
2

+E[Y |x1=b1...xi−1=bi−1x1=1]
2

I At every iteration we assign xi to have the maximizing binary value bi .

I We eventually obtain a assignment x← b ∈ {0, 1}n that is guaranteed to
satisfy ≥ 7

8m clauses. This is deterministic, randomness has been removed.

I 8
7 -approximation for the Max 3-SAT search problem.

I Greedy-3-SAT does n iterations, doing O(1) work for each clause Cj on
that iteration ⇒ O(n ·m) running-time.

I In 1997, Johan Håstad proved that if P 6= NP, then no polynomial-time
algorithm can guarantee a better approximation ratio for Max 3-SAT.

IADS – Lecture 27 – slide 14

Wrapping up

Vertex Cover 2-approximation in polynomial-time.

MAX 3-SAT 8
7 -approximation (best possible) in polynomial-time.

Ind.Set. The Max-Ind-Set problem cannot be approximated to any
constant approximation factor α (assuming P 6= NP).

All NP-complete problems can be reduced to one another. However,
the reductions typically do not preserve approximation ratios.

IADS – Lecture 27 – slide 15

Reading and Working

Reading:

CLRS Section 35 “intro”, 35.1 (Vertex Cover), 35.4 (Max 3-SAT)

KT Alternatively, you can read 13.3, 13.3 of Kleinberg and Tardos.

Working: Run Greedy-3-SAT on the following formula:

Φ = (x1 ∨ x̄2 ∨ x̄3)∧ (x1 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x̄2 ∨ x3)∧ (x̄1 ∨ x2 ∨ x3)

∧(x1 ∨ x2 ∨ x̄4)∧ (x1 ∨ x̄2 ∨ x4)∧ (x2 ∨ x̄3 ∨ x̄4).

IADS – Lecture 27 – slide 16

