Introduction to Algorithms and Data Structures

Lecture 27: Dealing with NP-completeness
(Approximation algorithms)

Mary Cryan

School of Informatics
University of Edinburgh

IADS — Lecture 27 — slide 1

Implications of NP-complete status

When prove a problem is NP-complete, we no longer expect to be able
to design polynomial-time algorithms to generate exact solutions (to
the Decision problem or to an Optimization version)

What are our options?

» Heuristic methods (“rules of thumb”) that might not guarantee good
results, but behave well in practice.

» Might there be a polynomial-time algorithm to search for an approximate
solution rather than an exact one? (today)

» Brute-force methods that run in exponential-time (L28)

» Recursive backtracking (L28)
We might use randomness ... and may later want to de-randomize.

Mostly we are dealing with the optimization version of the decision problem.

IADS — Lecture 27 — slide 2

What is an approximation algorithm?

For an optimization problem, we ask questions of the form

“For a given instance J of the problem, what is
the value of a best solution y for that instance?

best will usually either be
» max-valued (eg Ind.Set, solutions being Ind.Sets.) or
» min-valued (eg Edit distance, solutions being alignments).

Definition: Consider some optimization problem OPT where for a given instance
J, and the set of feasible solutions y, OPT(J) is the cost/value of the optimum y.

An algorithm A is said to be an x-approximation algorithm for OPT if for every
instance J, the algorithm returns a value A(J) satisfying

A9) < o OPT(D) if OPT is a minimization problem
> o 1-OPT(l) if OPT is a maximization problem

IADS — Lecture 27 — slide 3

Polynomial-time approximation: examples

be NP-camplete

E™S M whether P=ANP of
whelher there cre Pablems (a
NP buk not in P

Aot

16 NP andl P ane diffecent then
SAT (and. olhe NP- complete problems)
he ocutside R

sharket pobn .
*2-Sa1
surting

Vertex Cover Will see a simple algorithm which gives a 2-approximation.

MAX 3-SAT Will see a randomized algorithm (and a derandomization) that
gives a %—approximation for satisfying a max number of clauses.

note: The x-value is called the approximation ratio of the algorithm.

IADS — Lecture 27 — slide 4

Vertex Cover (minimization)

Definition
Given an undirected graph G = (V, E), a subset V' C V is a Vertex Cover
(VC) for G if every edge e € E has at least one endpoint in V.

VERTEX COVER: Determine the size of the minimum cardinality VC for G.

Optimum VC has size 4 (c, 1 of {d, g}, 2 non-adjacent vertices of {a, b, f, e}).

IADS — Lecture 27 — slide 5

2-approximation for Vertex Cover

The decision version of VERTEX COVER (is the minimum VC of size < k)
is NP-complete = we do not believe that the optimization VERTEX COVER
problem can have a polynomial-time algorithm.

Here is an approximation algorithm:

Algorithm Approx-Vertex-Cover(G = (V, E))

1.

No ok~ b

Ce10
E'—E
while E" # 0
do take any edge (u,v) € E’
C « CU{u,v} // add both u and v to the cover

Remove every edge g with u or v endpoint from E’
Print(“There is a VC of size ", |C|)

IADS — Lecture 27 — slide 6

2-approximation for Vertex Cover: example

We end up with a VC of size 6.

IADS — Lecture 27 — slide 7

2-approximation for Vertex Cover

Algorithm Approx-Vertex-Cover(G = (V, E))

1. C«10

2. E'+—E

3. while E' #£10

4. do take any edge (u,v) € E’

5. C— CU{y,v} // add both u and v to the cover
6. Remove every edge g with u or v endpoint from E’

Why a 2-approximation?
» Compare to some unknown minimum vertex cover C*.
» Consider the set F of all edges chosen by line 4 (the “purple edges”).

» Each f € F must have one endpoint in C*.
For f,f' € F,f # f', f and f’ share no endpoints. So |C*| > |F|.

» The alg chooses each f to have no overlapping endpoints with the earlier
purple edges. So |C| = 2|F|. Hence |C| < 2|C*|.

IADS — Lecture 27 — slide 8

Optimization /search problem Max 3-SAT

Max 3-SAT: Given a 3-CNF formula ¢ = CG; A ... A\ C,, over the variables
{x1,...,x,}, determine the maximum number of clauses k such that there is an
assignment of binary values to {xi, ..., x,} that makes k clauses satisfied.

3-SAT is NP-complete = we do not expect a polynomial-time algorithm to
exactly solve the MAX 3-SAT problem. Why?

We will design an algorithm to find an assignment satisfying > Z - m clauses.

> Will show we are guaranteed there is some assignment satisfying > 7 -m
clauses = get an ——appro><|mat|on algorithm for MAx 3-SAT.

» In fact, for optimizing the value, we could just output £ - m without
checking anything ... this would already be a 7—apprOX|matlon algorithm.

» Search problem: find an assignment to satisfy a high number of clauses.

» We assume/require a 3-CNF formula where each clause C; has exactly 3
literals (on different logical variables). Need this condition.

IADS — Lecture 27 — slide 9

Uniform Random Assignment and MAX 3-SAT

We are given ¢ = GG A G A ... N\ Gy, and each of the G is ({;1 V {2V {;3)
for three literals over {xi, ..., x,} (for example, (xa V x1 V Xg)).

want: assignment to the {x,...,x,} which satisfies a high number of clauses.

Consider a single clause C; = ({;1 V {; 2V {;3)

> C; is satisfied if at least one of its literals are satisfied: £; 1 or {; 5, or {; 3
» C; will fail to be satisfied only if all its literals are False.

» Suppose we generate a uniform random assignment (uar) to the logical
variables x1, ..., x, (each x; gets 0/1 with probability %)

> The probability that C; is not satisfied is exactly 3 - 5 - 1, ie, 1.

» This is where we use the assumption that each clause has 3 literals
over different x;.
» The probability that C; is satisfied is exactly %.

The expected number of clauses of ¢ satisfied by a uar assignment is %m.

IADS — Lecture 27 — slide 10

Uniform Random Assignment and MAX 3-SAT

b=GANGAN...NCyh
Let Y; be the 0/1 random variable that is 1 if C; is satisfied.

Then Y = Z,m:1 Y; is the number of clauses that are satisfied by the assignment.
The expected number of clauses E[Y] satisfied by a uar assignment is £m (by
linearity of expectation)
» Must be at least one assignment to X = x; ... x, which satisfies > %m
clauses.

> If all assignments to the variables satisfied < gm clauses, the
expected number could not be %m.(under uar random assignment,
the expectation is the average over all {0,1}").

» Naive (randomized) algorithm: generate a random assignment b € {0, 1}"
until we achieve > %m satisfied clauses.

IADS — Lecture 27 — slide 11

De-randomized > %m algorithm for Max 3-SAT

db=GANCGN...NCy

Y = ZJm:l Y; the number of clauses that are satisfied by the uar assignment.

1 m
BY] = 50 > 2
1 Z’" x =
= = (Y|1 =0) Y|21 11)

x€{0,1}r—1 j=1

_ E[Y|X1:0] Y‘Xlil]
- 2 + 2

Observe: If E[Y] > %m, then either E[Y | x; = 0] > %m orElY | x,=1] > %m

Idea: Compute E[Y | x; = 0] and E[Y | x; = 1] (how?), compare values, fix x;
to have that maximizing binary value ... iterate.

IADS — Lecture 27 — slide 12

De-randomized > %m algorithm for Max 3-SAT

“Method of conditional expectations”

Algorithm Greedy-3-SAT (¢, n, m)

1. fori=1,...,n

2 Compute Expy « E[Y | x1 = b1...xi-1 = bi—1,x; = 0]
3 Compute Exp1 «— E[Y | x1 = b1...xi-1 = bi—1,x; = 1]
4 if Expo > Exp:

5. then b; «— 0; Update ¢ by fixing x; =0

6 else b; «+ 1; Update ¢ by fixing x; =1

7. return b

Computing the Expo, Exp: values:
» After fixing bi,...,bi—1, $(b1,...,bi—1) will have some already satisfied clauses,
some already failed clauses, and some unresolved clauses of lengths 1, 2, and 3.

> Evaluate Expo by setting x; = 0. For any C; with x; € G, E[Yj |...x; =0] = 1.

For any C; with x; € C;, E[Y; | ...] drops from % — %, from % — % or % — 0.

» Evaluation of Exp; is symmetric.

IADS — Lecture 27 — slide 13

De-randomized > %m algorithm for Max 3-SAT

At every iteration of Greedy-3-SAT, we have

E[Y|xi=b;...x;—1=b;_1x1=0
EIY |x1 = by.oxig = by = BYba=biox=h o=
ElY|xi=b;...x; 1=bj _1x1=1]
2

+

P> At every iteration we assign x; to have the maximizing binary value b;.

» \We eventually obtain a assignment x « b € {0, 1}" that is guaranteed to
satisfy > %m clauses. This is deterministic, randomness has been removed.

> %—approximation for the MAX 3-SAT search problem.

» Greedy-3-SAT does n iterations, doing O(1) work for each clause C; on
that iteration = O(n - m) running-time.

» In 1997, Johan Hastad proved that if P £ NP, then no polynomial-time
algorithm can guarantee a better approximation ratio for MAx 3-SAT.

IADS — Lecture 27 — slide 14

Wrapping up

be NP-camphete

% Dent know whether P=NP or
whebher Ehee are PAblems ia
NP Buk Aot in

* 16 NP and P are diffecest then
SAT (and obher NP-complete problems)
he outside P

Vertex Cover 2-approximation in polynomial-time.
MAX 3-SAT 2-approximation (best possible) in polynomial-time.
Ind.Set. The MAX-IND-SET problem cannot be approximated to any

constant approximation factor o« (assuming P # NP).

All NP-complete problems can be reduced to one another. However,
the reductions typically do not preserve approximation ratios.

IADS — Lecture 27 — slide 15

Reading and Working

Reading:
CLRS Section 35 “intro”, 35.1 (Vertex Cover), 35.4 (MAX 3-SAT)
KT Alternatively, you can read 13.3, 13.3 of Kleinberg and Tardos.

Working: Run Greedy-3-SAT on the following formula:

o = (X1\/)?2\/)?3)/\(X1VX2\/)?3)/\()?1\/)?2\/X3)/\()?1\/X2\/X3)
/\(X1VX2\/)?4)/\(X1\/)?2\/X4)/\(Xz\/)?g\/)@).

IADS — Lecture 27 — slide 16

