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Single-item Auctions
There are  bidders from a set .


There is one item for sale. 


Every bidder has a value  for the item - this is the bidder’s willingness 
to buy it. 


Each bidder chooses a bid  according to some function . 


The allocation function  decides who wins given the 
bids. 


The payment function  decides how much each bidder will 
pay. 
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 is .

vi
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Bilateral trade: one item for sale, the seller has a value of  for the item and 
the buyer has a value of . The possible outcomes are {trade, no-trade} and 
appropriate payments can be chosen. 
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Public project: A public project with cost  is to be done, which is valued by 
each citizen at . The government wants to implement the project if 

. 

C
vi

∑
i

vi > C
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Informally: A domain is single-parameter if the value of each agent 
for the possible outcomes can be captured (encoded) by a single 
value . vi

Formally: There is a set of “winning outcomes”  for agent , and 
 if  and , otherwise. 

Wi i
vi(a) ∈ [t0, t1] a ∈ Wi vi(a) = 0

It may make sense to think of single-item auctions, keeping in 
mind that the results that we will present next are much more 
general. 
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Task: We will characterise all truthful mechanisms in single-
parameter domains.

i.e., we will make a statement of the form: “A mechanism is truthful 
if any only if it looks like this”

- its social choice function (allocation function) looks like this 
and

- its payment function looks like this.
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Monotonicity

Definition (monotonicity): A social choice function  in the single-
parameter domain is called monotone (in the agent’s value ), if, 
for every  and every , we have that 

f
vi

v−i v′ i ≥ vi

f(vi, v−i) ∈ Wi ⇒ f(v′ i, v−i) ∈ Wi

i.e., if the value of agent  increases, then, if  was winning before,  
is still winning. 

i i i
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Definition (critical value): The 
critical value of a  social choice 
function  in the single-
parameter domain is


f

ci(v−i) = sup
vi:f(vi,v−i)≠Wi

vi
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random.


The winner needs to pay the bid of the second highest 
bidder, all other bidders do not pay anything. 
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These are also sealed-bid auctions.  

Each bidder submits their bid independently, without seeing 
the bids of the other bidders.


The winner is the bidder with the highest bid.


If there are multiple such bidders, one is chosen at random.


The winner needs to pay the maximum of the bid of the second 
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Why is the FPA not truthful then?

Possible reason: The SCF (allocation) is not monotone. Is it?


Possible reason: The payment is not the critical value. 
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Theorem (Myerson’s Characterisation or Myerson’s Lemma, Myerson 
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Utility is is .vi − pi = vi − ci(v−i)

This utility is at least 0, why?

Still winning, still paying the same, same 
utility.

May be losing, then the utility is 0. 
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critical value

Assume with real value  that agent  is 
losing. 

vi i

Utility of winning is .vi − pi = vi − ci(v−i)

This utility is at most 0, why?

Losing does not change the payment, 
winning is not better.

Where was monotonicity used really?
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Proof: Truthful  Monotone + Critical Value Payment⇒

Monotonicity: Assume by contradiction that  is not monotone. f

That means that with a higher value  the agent loses, whereas with 
 the agent wins. The payment in the latter case is .

v′ i > vi
vi pi(vi, v−i)

By truthfulness, , as otherwise the agent 
with real value  would have an incentive to misreport , lose, and get a 
utility of .

ui(vi, pi) = vi − p(vi, v−i) ≥ 0
vi v′ i

0

By truthfulness, , as otherwise the agent 
with real value  would have an incentive to misreport , win, and get a 
positive utility. 

ui(v′ i, pi) = v′ i − p(vi, v−i) ≤ 0
v′ i vi
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(2) . Let  and . p < ci(v−i) v′ i < ci(v−i) v′ i > p
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An agent with true value  has 0 utility, and it would prefer to bid  and win, gaining 
positive utility, and violating truthfulness.

v′ i vi
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Theorem (Myerson’s Characterisation or Myerson’s Lemma, Myerson 
1981): Let  be a mechanism on a single-parameter 
domain, for which losers pay . Then,  is truthful if any 
only if the following conditions hold:
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Randomized Mechanisms

So far we have been talking about deterministic mechanisms, in which 
an agent is either a winning agent or a losing agent. 

We can also have randomised mechanisms, in which the agent is a 
winning agent with some probability.

e.g., in single-item auctions, the agent wins the item with some 
probability .wi(vi, v−i)

Myerson’s characterisation can be generalised for these 
mechanisms as well!
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Randomized Mechanisms

The utility of an agent is given by . vi ⋅ wi(vi, v−i) − pi(vi, v−i)

We will consider normalised mechanisms in which the lowest  has 0 
probability of winning, i.e.,  for  and incurs 

0 payment, i.e., .

vi
wi(vℓ

i , v−i) = 0 vℓ
i = min

i
vi

pi(vℓ
i , v−i) = 0
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This is why monotonicity is important. 
Otherwise the area under the integral 
would be larger when misreporting!
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More general mechanisms?
All the mechanisms that we have seen so far are of the following form:

- The agents declare their values/preferences up front,

- The mechanism chooses an outcome (and payments) based on this 
declarations. 

These mechanisms are called direct revelation mechanisms. 

We could have more complicated mechanisms which e.g., interact with the 
agents in rounds, ask them questions, present them with tasks etc?

Crucially, could these mechanisms achieve things that truthful direct revelation 
mechanisms cannot?
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What are truthful mechanisms really?

A direct revelation mechanism has the following two properties:

(1) For every valuation/preference profile, the corresponding game has a 
dominant strategy equilibrium (DSE).

(2) At this DSE, every agent truthfully reports her true value. 
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But we don’t need the agents to be truth-telling at those DSE.


And the mechanism does not have to be direct revelation.


Theorem (The Revelation Principle): If there is an arbitrary mechanism in which there is 
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Beyond Truthful Mechanisms

Maybe we are asking too much by requiring our mechanisms to be truthful.

Maybe we should “let people play” and use game theory to evaluate what will happen.

If we insist on DSE, truthfulness is wlog (in settings where the Revelation Principle 
holds).

But we might be ok with just a mixed Nash equilibrium or a pure Nash equilibrium if it 
exists.

Or an appropriate notion for games with uncertainty (stay tuned).

Could mechanisms with good Nash equilibria outperform truthful mechanisms?

Sometimes… 


