
Algorithmic Game Theory 
and Applications
A proof of Nash’s Theorem



A Feature of Best 
Responses

Claim: The best response is either pure, or there are infinitely many best responses. 


Proof:


Assume that we have a best response strategy  which is not pure. 


That means that the support of  contains at least two pure strategies  and .


Each of those pure strategies, if played as pure strategies, should give the same 
utility to the player (by Proposition 2).


And this utility is the maximum the player can get with a best response.


Any convex combination (probability mixture) of those two yields maximum utility, 
i.e., it is a best response.


There are infinitely many convex combinations of those two pure strategies. 
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Nash Equilibrium Existence
Nash’s Theorem (1950): Every finite, normal-form game has at least one 
mixed Nash equilibrium. 


Next, we will see a proof (sketch) of that theorem. 


We will consider different levels to the proof.


Level 1: We will prove the theorem using a theorem from topology 
(Brouwer’s fixed point theorem) as a tool.


Level 2: We will prove the theorem from topology (Brouwer’s fixed point 
theorem) using a different lemma from topology (Sperner’s Lemma). 


Level 3: We will prove the lemma from topology (Sperner’s Lemma) 
from first principles. 

The exposition follows Shoham and Leyton-Brown, Ch. 3.3.4



Technical Definitions

Convexity: A set  is convex if for every  and 
, we have that . 

C ⊂ ℝm x, y ∈ C
λ ∈ [0,1] λx + (1 − λ)y ∈ C

Source: Wikipedia



Technical Definitions
Convexity: A set  is convex if for every  and 

, we have that . 


Compactness: A set  is compact if it is closed and bounded.


Closed: contains its boundary (its limit points).


Bounded: there is a bounded distance between every two points. 

C ⊂ ℝm x, y ∈ C
λ ∈ [0,1] λx + (1 − λ)y ∈ C

C ⊂ ℝm

Source: Wikipedia



Example of a convex 
compact set

Recall the unit simplex: 


{y ∈ ℝn+1 :
n

∑
i=1

yi = 1,∀i = 1,…, n, yi ≥ 0}

Source: Wikipedia



Nash Equilibrium Existence
Brouwer’s Fixed Point Theorem (1911): Let  be convex and 
compact, and let  be a continuous function. Then  has a 
fixed point, i.e., there exists some point  such that .


Intuition: We would like our function to map mixed strategy profiles to 
mixed strategy profiles, and the fixed point to correspond to the 
mixed Nash equilibrium of our game.


Question: What will be our convex, compact set?


The set of all mixed strategy profiles


i.e., 

C ⊂ ℝm

f : C → C f
x ∈ C f(x) = x

Δ(S1) × …, × Δ(Sn)



Nash Equilibrium Existence
Question: What will be our convex, compact set?


The set of all mixed strategy profiles


i.e., 


We need to define our function:


We can define it separately for each component , i.e., we can define 
.


Ideas?


Maybe define  to be the best response of player ? 


Not a continuous function!

Δ(S1) × …, × Δ(Sn)

i
fi : C → Δ(Si)

fi i



Nash Equilibrium Existence

Let    


Define  by 
 where


 

fi,si
(x) = max{0, ui(si, x−i) − ui(x)}

f : Δ(S1) × …, × Δ(Sn) → Δ(S1) × …, × Δ(Sn)
f(x) = x′ 

x′ i(si) =
xi(si) + fi,si

(x)

∑bi∈Si (xi(bi) + fi,bi
(x))

=
xi(si) + fi,si

(x)
1 + ∑bi∈Si

fi,bi
(x)

Increase in utility by playing , capped below by 0.si

convex and compact (simplotope)

continuous

continuous

By Brouwer’s fixed point theorem,  has a fixed point, where .f f(x) = x
It remains to show that  is a mixed Nash equilibrium.x



Nash Equilibrium Existence

 


thus,





hence,


x′ i(si) =
xi(si) + fi,si

x)

∑bi∈Si (xi(bi) + fi,bi
(x))

=
xi(si) + fi,si

(x)
1 + ∑bi∈Si

fi,bi
(x)

x′ i(si) ⋅ 1 + ∑
bi∈Si

fi,bi
(x) = xi(si) + fi,xi

(x)

xi(si) ⋅ ∑
bi∈Si

fi,bi
(x) = fi,si

(x) ⏟Here we used the fact that  
 

which is true because  is a  
fixed point.

f(xi(si)) = x′ i(si) = xi(si)
x′ 

We will show that 

⇒ fi,bi
= 0 ∀bi ∈ Si  is a best response⇒ xi



Nash Equilibrium Existence
We have 


Claim: There exists at least one pure strategy  in the support of  
such that .


Proof: Recall 


Also recall that 


This implies that there exists  such that  .

xi(si) ⋅ ∑
bi∈Si

fi,bi
(x) = fi,si

(x)

ci ∈ Si xi
fi,ci

= 0

fi,si
(x) = max{0, ui(si, x−i) − ui(x)}

ui(x) = ∑
i:si∈ supp(xi)

xi(si) ⋅ ui(si, x−i)

ci ui(ci, x−i) ≤ ui(xi) ⇒ fi,ci
= 0



Nash Equilibrium Existence
This implies that there exists  such that  .


From the previous slide, we have  
 

 for all 


Also in particular for , for which 


It cannot be the case that  (why?)


This means that , but we know that  for all  by definition.


This can only mean one thing:  for all .

ci ui(ci, x−i) ≤ ui(xi) ⇒ fi,ci
= 0

xi(si) ⋅ ∑
bi∈Si

fi,bi
(x) = fi,si

(x) si ∈ Si

ci xi(ci) ⋅ ∑
bi∈Si

fi,bi
(x) = 0

xi(ci) = 0

∑
bi∈Si

fi,bi
(x) = 0 fi,bi

≥ 0 i

fi,bi
= 0 i



Nash Equilibrium Existence

Let    


Define  by 
 where


 

fi,si
(x) = max{0, ui(si, x−i) − ui(x)}

f : Δ(S1) × …, × Δ(Sn) → Δ(S1) × …, × Δ(Sn)
f(x) = x′ 

x′ i(si) =
xi(si) + fi,si

(x)

∑bi∈Si (xi(bi) + fi,bi
(x))

=
xi(si) + fi,si

(x)
1 + ∑bi∈Si

fi,bi
(x)

At a fixed point of ,  we have  for all  is a mixed Nash equilibrium.f fi,si
= 0 i ⇒ σ



Nash Equilibrium Existence
Nash’s Theorem (1950): Every finite, normal-form game has at least one 
mixed Nash equilibrium. 


Next, we will see a proof (sketch) of that theorem. 


We will consider different levels to the proof.


Level 1: We will prove the theorem using a theorem from topology 
(Brouwer’s fixed point theorem) as a tool.


Level 2: We will prove the theorem from topology (Brouwer’s fixed point 
theorem) using a different lemma from topology (Sperner’s Lemma). 


Level 3: We will prove the lemma from topology (Sperner’s Lemma) 
from first principles. 
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Brouwer’s Fixed Point 
Theorem

Brouwer’s Fixed Point Theorem (1911): Let  be convex and 
compact, and let  be a continuous function. Then  has a 
fixed point, i.e., there exists some point  such that .


Consider the following very simple convex and compact space: 

C ⊂ ℝm

f : C → C f
x ∈ C f(x) = x



More Technical Definitions
Simplicial Subdivision or Triangulation: A triangulation of an  

-simplex  is a finite set of simplicies  for which  

and for any either  or  is equal to a 
common face. 

n T {Ti} ⋃
Ti∈T

Ti = T

Ti, Tj ∈ T, Ti ∩ Tj = ∅ Ti ∩ Tj

Source: Shoham and Leyton-Brown Source: Wikipedia

Labelling function: 
ℒ : T → {0,1,…, n}



Sperner’s Lemma

Sperner labelling (colouring): Vertices of 
facet  do not receive the colour .


Sperner’s Lemma (1928): There always 
exists a panchromatic simplex.

j j



Proving Brouwer via Sperner

Brouwer’s Fixed Point Theorem (1911): Let  be convex and 
compact, and let  be a continuous function. Then  has a fixed 
point, i.e., there exists some point  such that .


Sperner’s Lemma (1928): Consider a triangulation of the -simplex 
coloured with a Sperner colouring. Then, there always exists a 
panchromatic simplex.


We will sketch the proof of Brouwer’s fixed point theorem when  is the  
-simplex . 

C ⊂ ℝm

f : C → C f
x ∈ C f(x) = x

n

C
n Δn



Proving Brouwer via Sperner
Let  be our Brouwer function. 


Let  be the ’th component of , and let  be the ’th component of .


Consider a triangulation of  where the size (= distance between any two points in the same 
small simplex) is at most .


Define a labelling function  such that 


It can be verified that this assigns a valid label to each point. 


Intuition: If  for all , it would hold that , which is not possible 

since  also. 


It can be verified that this is a valid Sperner colouring.

f : Δn → Δn

fi(x) i f xi i x

Δn
ε

ℒ ℒ ∈ {i : fi(x) ≤ xi}

fi(x) > xi i ∑
i

fi(x) > ∑
i

xi = 1

∑
i

fi(x) = 1



Proving Brouwer via Sperner
By Sperner’s Lemma, we have a panchromatic simplex.


By our labelling function, that corresponds to a simplex defined by the points , 
such that  for each one of them.


We also know that all of these points are within distance at most  from each other.


Take : 


Intuitively, the simplex converges to a single point , such that .


Actual argument uses compactness and a subsequence of centroids of the corresponding 
simplices (for each triangulation given by ), and the continuity of .


Similarly to before, this implies that  (fixed point) as otherwise we would have 
, a contradiction.

(x0, x1, …, xn)
fi(xi) ≤ xi

ε

ε → 0

z fi(z) ≤ zi

ε f

f(z) = z
1 = ∑

i

fi(z) < ∑
i

zi = 1
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A pictorial proof of 
Sperner’s Lemma



Door: an edge with endpoints which are blue and red.

Claim: On the boundary of , there is an odd number of doors.Δn

We start from red

We end with blue

There must be an even number of changes  
between red and blue.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.

Claim: On the boundary of , there is an odd number of doors.Δn

There must be another door to enter.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.

If we enter from the boundary, we will either 
(a) exist via the same boundary (why?) 

(b) find a panchromatic triangle.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Door: an edge with endpoints which are blue and red.



Add an artificial starting node.



Connect it with all nodes on the door boundary. 







Equivalently: A graph  where the nodes are the simplices.G
Edges between simplices connected via doors.

degree 2 node

degree 1 node

degree 1 node
degree 1 node

How many degree  
1 nodes here?

An even number

By parity, there must be 
another one.

That can only be at a 
panchromatic triangle.
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Nash Equilibrium Existence
Nash’s Theorem (1950): Every finite, normal-form game has at least one mixed 
Nash equilibrium. 


If you are interested in the full proof, see Shoham and Leyton-Brown - 
Multiagent Systems, Chapter 3.3.4.


A more informal exposition: Roughgarden - Twenty Lectures in Game Theory, 
Chapters 20.4 and 20.5.1.


What we didn’t do:


A rigorous proof of Brouwer’s Theorem from Sperner’s Lemma, and in fact 
for the case of the simplotope domain.


A rigorous proof of Sperner’s Lemma in  dimensions, which uses induction. n



-Best Responsesε
A pure strategy  of player  is a best response to the pure 
strategies of the other players  if it maximises the player’s utility 
among all possible pure strategies. 


 for all 


Defined similarly for mixed strategies:


 for all 


-best response: 


Intuition: A player can increase their utility, but not more than .

si i
s−i

ui(si, s−i) ≥ ui(s′ i, s−i) s′ i ∈ Si

ui(xi, x−i) ≥ ui(x′ i, x−i) x′ i ∈ Δ(Si)

ε ui(xi, x−i) ≥ ui(x′ i, x−i) − ε

ε



-Nash Equilibriumε
A pure strategy profile  is a pure -Nash equilibrium, if for every 
player with strategy  in ,  is an -best response. 


A mixed strategy profile  is a mixed -Nash equilibrium, if for every 
player with strategy  in ,  is an -best response. 

s ε
si s si ε

x ε
xi x xi ε



Why -Nash Equilibria?ε
Conceptual Motivation: If a player cannot increase their utility by 
much, they will not bother deviating  -Nash equilibria are still 
quite robust, especially when  is very small. 


Computational Motivation: Nash equilibria (i.e,, with ) might 
require irrational numbers to be described.


e.g., maybe some strategy needs to be played with probability 
. 


How are we going to represent those equilibria on our computer, 
which can only use rational numbers?

⇒ ε
ε

ε = 0

1/ 5



An important remark
A mixed strategy profile  is a mixed -Nash equilibrium, if for every 
player with strategy  in ,  is an -best response. 


x ε
xi x xi ε



An important remark
A mixed strategy profile  is a mixed -Nash equilibrium  
(weak approximation), if for every player with strategy  in ,  is an 
-best response. 


A mixed strategy profile  is a mixed -Nash equilibrium  
(strong approximation), if  is some (exact) mixed Nash equilibrium 
and .

σ ε
xi x xi

ε

x ε
x*

| |x − x* | |∞ ≤ ε

exact NEstrong approximation

weak approximation



Another important remark
Conceptual Motivation: If a player cannot increase their utility by much, 
they will not bother deviating  -Nash equilibria are still quite robust, 
especially when  is very small. 


Computational Motivation: Nash equilibria (i.e,, with ) might 
require irrational numbers to be described.


e.g., maybe some strategy needs to be played with probability . 


it has been shown that this might be the case when there are  
3 or more players.


for 2 players, there always exist mixed Nash equilibria in rational 
numbers, as we saw, via the Lemke-Howson algorithm.

⇒ ε
ε

ε = 0

1/ 5



Finding Nash Equilibria  
for 2 players

-NASH: Given as input a normal-form game with  players, with all 
the parameters (strategy sets, utilities) given in binary 
representation, return a Nash equilibrium, with the corresponding 
probabilities represented in binary. 


Is there a class of games for which we can solve -NASH in 
polynomial time? How?

2 2

2



Finding Nash Equilibria

So, for three or more players, we have the following problem:


-NASH( ): Given as input a normal-form game with  players, with 
all the parameters (strategy sets, utilities) given in binary 
representation, and an ,  return an -Nash equilibrium, with the 
corresponding probabilities represented in binary. 

n ε n

ε > 0 ε



Polynomial time 
algorithms?

Can we design polynomial time algorithms for either  
2-NASH or -NASH( )?n ε



Complexity of MNE 
computation

If the answer is yes, the evidence is such an algorithm.


If the answer is no, what is the evidence? 


Computational hardness.


NP-hardness: Informally, we should not expect to find polynomial time 
algorithms for NP-hard problems. 



Complexity of MNE 
computation

Is NP the right class for MNE computation? (call the problem NASH)


Some NP-hard problems: 


- SAT: Given a boolean formula in CNF form, decide whether there exists a 
satisfying assignment.


- VERTEX COVER: Given a graph G and a number k, decide whether there 
exists a vertex cover of size at most k in G. 


Is NASH different?


Given a game G, decide if there exists a MNE?


This is trivial.


Given a game G, find a MNE, which we know exists. 



The Class TFNP

Defined by (Megiddo and Papadimitriou 1988).

“Total Search Problems in NP”


Total: A solution is guaranteed to exist.

Search: We are looking for a solution.


➢e.g., find a Nash equilibrium

in NP: Given a candidate solution, we can verify it in 
polynomial time.



The TFNP hierarchy
Define several 
subclasses of TFNP.


Show completeness 
results for those 
classes.


Approach initiated by 
(Papadimitriou 1994).

TFNP

PPP
PLS

PPA

PPAD

P

Papadimitriou 1994 Johnson, Papadimitriou  
and Yannakakis 1988



PPAD 
(Polynomial Parity Argument on a Directed Graph)
END-OF-LINE:  
Input: An exponentially large directed graph, implicitly 
given as input, with vertices of indegree and outdegree at 
most 1. 
A vertex of indegree zero (a source).

Output: Another vertex of indegree 0 or a vertex of 
outdegree 0 	 (another source or a sink)


Two polynomial-sized circuits  and  that input a vertex 
and output its predecessor and its successor 
respectively.

𝑃 𝑆



PPAD 
(Polynomial Parity Argument on a Directed Graph)
PPAD membership: A problem is in PPAD if it can be 
reduced to END-OF-LINE in polynomial time.


PPAD-hardness: A problem is PPAD-hard if END-OF-
LINE can be reduced to it in polynomial time.


PPAD-completeness: PPAD membership + PPAD-
hardness.



Complexity of MNE 
computation

Theorem (Chen and Deng 06): 2-NASH is PPAD-complete.


Theorem (Goldberg, Daskalakis, and Papadimitriou 06): -NASH is 
PPAD-complete.


These results essentially mean that we should not hope to design 
polynomial time algorithms for finding MNE in games in general, and 
this is inherently a hard computational problem. 

n


