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In fact, in most cases we can assume that this strategy profile is 
pure, therefore .s
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Price of Anarchy of a game

PoA  , (G)=
SW(x*)

minx∈MNE(G) SW(x)

where  and MNE  is the set of mixed Nash 

equilibria of the game . 

x* ∈ arg max
x

SW(x) (G)

G

Since we are considering all MNE, we refer to this as the “mixed 
Price of Anarchy”. 

We can also have the “pure Price of Anarchy” with only referring to 
PNE above.  

We can have this actually for any solution concept, e.g., “correlated 
Price of Anarchy” for correlated equilibria (Tutorial 3). 
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Price of Anarchy of  
a class of games

PoA  , 


where  and MNE  is the set of mixed Nash 

equilibria of the game . 

(𝒢)= max
G∈𝒢

SW(x*)
minx∈MNE(G) SW(x)

x* ∈ arg max
x

SW(x) (G)

G



For cost minimisation 
games

PoA  , 


where  and MNE  is the set of mixed Nash 

equilibria of the game . 


We flip the ratio to maintain the convention that PoA  1 always.

(𝒢)= max
G∈𝒢

maxx∈MNE(G) SC(x)
SC(x*)

x* ∈ arg min
x

SC(x) (G)

G

≥
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Pessimist or Optimist

The Price of Anarchy is truly a worst-case guarantee. 

It says that even if the players end up at the worst possible 
equilibrium, the multiplicative difference in social welfare (or social 
cost) will be bounded by the Price of Anarchy. 

Maybe we can be more optimistic: what if we consider the best 
possible equilibrium instead? 

Price of Stability (Anshelevich et al. 2006). 
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What is the optimal outcome here, i.e., the one the minimises the social cost?

 = top,  = bottom,  = s1 s2 SC(s1, s2) 3

What is an equilibrium of this game? 
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What is the Price of Anarchy of the game?
What is the Price of Stability of the game?



Atomic Network  
Congestion Games

Definition: An (atomic) network congestion game is a congestion 
game in which the resources are edges in a directed graph, and 
each player must choose a set of edges that forms a (simple) path 
from a given source  to a given sink .


On every edge there  is a cost function  which is a function of 
the number of players that have  in their chosen paths. 

si ti

e ce(x)
e

For example:  could be a linear function ce(x)
ce(x) = αex + βe
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c(x) = 2

c(x) = x
What is the optimal outcome here, i.e., the one the minimises the social cost?


 = top,  = bottom,  = 


What is an equilibrium of this game? 


The optimal solution is an equilibrium! 


Any other equilibria?


 = bottom,  = bottom,  = 

s1 s2 SC(s1, s2) 3

s1 s2 SC(s1, s2) 4

What can we say about the PoA / PoS  
of network congestion games?

PoA   (𝒢NC) ≥ 4/3

PoS   (𝒢NC) ≥ 1
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