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This is a Nash equilibrium!
Every commuter experiences a congestion  

of 2.
Adding the high speed link 

made things worse!

Braess’ Paradox (Pigou 1920)
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But it is not unreasonable to not have this in some cases, e.g., the El Farol Bar 
problem.
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Atomic Network  
Congestion Games

Definition: An (atomic) network congestion game is a congestion 
game in which the resources are edges in a directed graph, and 
each player must choose a set of edges that forms a (simple) path 
from a given source  to a given sink .si ti

On every edge there  is a cost function  which is a function of 
the number of players that have  in their chosen paths. 

e ce(x)
e

For example:  could be a linear function ce(x)
ce(x) = αex + βe
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The best response dynamics might not converge!
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Theorem (Rosenthal 1973): In any congestion game, the best 
response dynamics always converges to a pure Nash 
equilibrium.

In particular, this implies that every congestion game has a pure 
Nash equilibrium. 

The theorem also gives us an algorithm to find a PNE:

- start from any arbitrary strategy profile,

- run the best response dynamics until we reach a PNE. 
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Simple Proof
Theorem (Rosenthal 1973): Every potential game has a pure 
Nash equilibrium. 

Proof: 

Let , which implies that  for 

any other strategy profile .

s* ∈ arg max
s

Φ(s) Φ(s*) ≥ Φ(s′ )

s′ 

In particular, this also holds for . Since the game is a 
potential game, this means that , and hence 

 is a pure Nash equilibrium. 

s′ = (s′ i, s−i)
costi(s*) ≥ costi(s′ )

s*
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Φ(s) = ∑
r∈R

#(r,s)

∑
j=1

cr( j)

Recall: 

-  is the number of players that use resource  in the 
strategy profile .
#(r, s) r

s

-  is the cost of resource  when it is being used by  
players.
cr( j) r j
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Best Response Dynamics in 
Congestion Games

Theorem (Rosenthal 1973): In any congestion game, the best 
response dynamics always converges to a pure Nash 
equilibrium.


In particular, this implies that every congestion game has a pure 
Nash equilibrium. 


The theorem also gives us an algorithm to find a PNE:


- start from any arbitrary strategy profile,


- run the best response dynamics until we reach a PNE. 
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How do we prove that the algorithm will terminate?
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Since this is a potential game, the potential function  is also increased by .Φ α

Recall: Φ(s) = ∑
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Assuming that the costs are integers, by at least . 1
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where  is the number of players that took any strategy that involves resource  under strategy 
profile profile .
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S = S1 × … × Sn Si ⊆ 2R∖{0} i
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We can enumerate over these.
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Whenever a player best responds, the player’s utility is increased by 
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Since this is a potential game, the potential function  is also increased by .


Recall: 


The potential function is at least  be definition.


 What is the maximum possible value of the potential function?





How much does the potential increase in each step?


Assuming that the costs are integers, by at least . 

ui(s′ i, s−i) − ui(si, s−i) = α

Φ α

Φ(s) = ∑
r∈R

#(r,s)

∑
j=1

cr( j)

0

m ⋅ n ⋅ max
j

cj(n)

1
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Unary representation: 510 → 11111
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How do we represent the input to the algorithm?

The number of players  and number of resources  are 
numbers that are given in binary. 

n m

The cost functions for each agent can be represented in 
space , where we represent the 

function  using a binary representation.

O(m ⋅ n ⋅ log max
j

rj(n))

rj( ⋅ )
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Termination
The best response dynamics converges in at most

 steps.m ⋅ n ⋅ max
j

cj(n)

Is this a polynomial time algorithm?

It is not, as  is exponential in the size of the input.max
j

cj(n)

It is what we call a pseudopolynomial time algorithm, i.e., it 
runs in time which is polynomial in the unary representation of 
the input. 

Intuition: If the cost functions are represented with fairly small 
numbers, then it is a fast algorithm. 
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A different approach 
perhaps?

Could we design a polynomial time algorithm for finding PNE in 
congestion games, perhaps using a different approach?

Not likely. 

Theorem (Johnson et al. 1988, Fabrikant et al. 2004): Computing 
a PNE of a congestion game is PLS-complete.



The TFNP hierarchy
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Theorem (Johnson et al. 1988, Fabrikant et al. 2004): Computing a 
PNE of a congestion game is PLS-complete.

How about mixed equilibria of congestion games?

- They exist by Rosenthal (1971), since PNE are MNE.

- They exist by Nash (1951), since congestion games are finite 
normal form games. 

Could they be easier to compute?

Theorem (Babichenko and Rubinstein 2021): Computing a MNE of a 
congestion game is PPAD  PLS - complete.∩
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