
Introduction to Algorithms and Data Structures

Lecture 24: LL(1) predictive parsing

John Longley

School of Informatics
University of Edinburgh

11 February 2025

IADS Lecture 24 Slide 1

Efficient parsing for artificial languages
Consider how we’d like to parse a program in the little programming
language from Lecture 20.

stmt → if-stmt | while-stmt | begin-stmt | assg-stmt

if-stmt → if bool-expr then stmt else stmt

while-stmt → while bool-expr do stmt

begin-stmt → begin stmt-list end

stmt-list → stmt | stmt ; stmt-list

assg-stmt → var := arith-expr

bool-expr → arith-expr compare-op arith-expr

compare-op → < | > | <= | >= | == | ! =

We’d like to read the program from left to right, processing each
token (i.e. terminal symbol occurrence) only once — hoping for
O(n) runtime.

IADS Lecture 24 Slide 2

Predictive parsing: the idea

Start symbol is stmt.

Want to construct a leftmost derivation of our program starting
from this (i.e. expanding the leftmost non-terminal at each step).

Let’s suppose the first token in the program is begin.

From this alone, we can tell that the first two steps must be

stmt → begin-stmt

→ begin stmt-list end

So we have to parse the complete program as begin stmt-list end.

Can now step over begin, and proceed to parse the remaining input
as stmt-list end.

We think of this as the predicted form for the remaining input.

IADS Lecture 24 Slide 3

LL(1) predictive parsing: intuition
In each of these two steps, the correct production to apply has been
determined from just two pieces of information:

▶ the current token (e.g. begin).

▶ the nonterminal to be expanded (e.g. stmt, begin-stmt).

If it’s always possible to determine the next production from just
this information, then the grammar is said to be LL(1).
(Meaning: read input from Left; build Leftmost derivation; look just
1 token ahead.) In this case, parsing can be very efficient.

Unfortunately, our example grammar isn’t quite LL(1), and the very
next step illustrates this.

We now have to expand stmt-list. Suppose second input token is if.
Which rule should we apply?

stmt-list → stmt or stmt-list → stmt ; stmt-list ?

No way to tell without further lookahead!

IADS Lecture 24 Slide 4

Fixing a grammar
In this case, we can recast the rules for stmt-list to fix the problem:

stmt-list → stmt stmt-tail

stmt-tail → ϵ | ; stmt stmt-tail

From the if, now see that the next two rules must be:

stmt-list → stmt stmt-tail

stmt → if-stmt

if-stmt → if bool-expr then stmt else stmt

The whole derivation so far:

stmt → begin-stmt

→ begin stmt-list end

→ begin stmt stmt-tail end

→ begin if-stmt stmt-tail end

→ begin if bool-expr then stmt else stmt stmt-tail end

This accounts for the first two tokens, begin if. Predicted form
for the rest is bool-expr then stmt else stmt stmt-tail end.

IADS Lecture 24 Slide 5

Parse tables
Consider the following grammar for bracket sequences, e.g. (()())()

S → ϵ | TS T → (S)

This is LL(1): can always tell from the ‘current token’ and ‘current
non-terminal’ which rule to apply. Take on trust for now.

Idea: That means we can draw up a 2-dim parse table, telling us
which rule to apply in any situation. In this case:

() $

S S → TS S → ϵ S → ϵ
T T → (S)

▶ Columns are labelled by terminals plus ‘end-of-input’ marker $.
Rows are labelled by non-terminals.

▶ Entry in column a and row X tells us the rule to apply if we have a
in the input and X is predicted.

▶ Blank entries: situations that never arise for a legal input.

Parsing is now easy: at each step, just do what the table tells us!

IADS Lecture 24 Slide 6

Example of LL(1) parsing

() $

S S → TS S → ϵ S → ϵ
T T → (S)

Let’s use this table to parse the input string (()).
A stack keeps track of the predicted form for remaining input.

Operation Remaining input Stack state
(())$ S

Lookup (, S (())$ TS
Lookup (,T (())$ (S)S
Match (())$ S)S
Lookup (, S ())$ TS)S
Lookup (,T ())$ (S)S)S
Match ())$ S)S)S
Lookup), S))$)S)S
Match))$ S)S
Lookup), S)$)S
Match) $ S
Lookup $, S $ empty stack

(Also easy to build a syntax tree as we go along!)

IADS Lecture 24 Slide 7

Short exercise

() $

S S → TS S → ϵ S → ϵ
T T → (S)

For each of the following two input strings:

) (

what will go wrong when we try to apply our parsing algorithm?

1. Blank entry in table encountered

2. Input symbol (or end marker) doesn’t match predicted symbol

3. Stack empties before end of string reached

Answer: For), we start by expanding S to ϵ. But this empties the stack,
whereas we haven’t consumed any input yet. So 3.

For (, we get to a point where we’ve reached the end marker $ in the

input, which doesn’t match the predicted symbol ‘)’ on the stack. So 2.

IADS Lecture 24 Slide 8

LL(1) parsing: the algorithm
LL1 Parse (table,S,input)

pos = 0
initialize stack with single entry S
while stack not empty

x = stack.peek()
if x is non-terminal # Lookup case

case table[x,input[pos]] of
blank: error
rule x → β:

stack.pop()
push symbols of β onto stack

(backwards!)
else # Match case

if x = input[pos]
stack.pop()
pos += 1

else error
if input[pos] = $

return Success
else error

IADS Lecture 24 Slide 9

Parse table revisited
Remember: The parse table entry for X , a tells us which rule to
apply if we’re expecting an X and see an a.

▶ Often, the a will be simply the first symbol of the
X -subphrase in question.

▶ But not always: maybe the X -subphrase in question is ϵ, and
the a belongs to whatever follows the X .

() $

S S → TS S → ϵ S → ϵ
T T → (S)

In this simple case, not too hard to see by ad-hoc reasoning that
the parse table is correct.

For a large grammar, this might be hard!
However, there’s an algorithm that takes a grammar and constructs
the parse table (or else detects the grammar isn’t LL(1)). Involves
First and Follow sets — but won’t pursue this here.

IADS Lecture 24 Slide 10

Further remarks

▶ LL(1) is an example of a top-down parser: builds syntax trees
from the root. Contrast with CYK which is bottom-up.

▶ For any ‘naturally arising’ LL(1) grammar, easy to see that
our parser runs in time Θ(n) (with small hidden constants).

▶ Not every CF language has an LL(1) grammar. But if we’re
designing a language, we can try to ensure that it does!

▶ LL(1) is nice for simple ‘command languages’ — and the
‘lightweight’ parsing algorithm is a plus.

▶ For large-scale languages, may want a bit more flexibility.
Common choice is LR(1) parsing (more complex than LL(1)).

▶ In the real world, no one implements parsers for large
languages by hand! We just write a CFG, then run a parser
generator which creates one automatically — typically by
constructing a parse table.

IADS Lecture 24 Slide 11

Putting it in context: The language processing pipeline

Think about the phases in which e.g. a Java program is processed:

Raw source text (e.g. x2=-x1)
⇓ lexing

Stream of tokens (e.g. x2, =, -, x1)
⇓ parsing

Syntax tree
⇓ typechecking etc.

Annotated syntax tree
⇓ compiling, optimization

Java bytecode
⇓ linking

JVM state
⇓ running

Program behaviour

IADS Lecture 24 Slide 12

The language processing pipeline (NL version)
Broadly similar pipeline e.g. for spoken English:

Raw soundwaves
⇓ phonetics

Phones (e.g. [ph]–pot, [p]–spot)
⇓ phonology

Phonemes (e.g. /p/, /b/)
⇓ segmentation, tagging

Words, morphemes, part-of-speech info
⇓ parsing

Syntax tree
⇓ agreement checking etc.

Annotated syntax tree
⇓ semantics

Logical form or ‘meaning’
⇓ · · ·

Though with ambiguity at all stages, and much ‘feedback’ from
later stages to earlier ones. IADS Lecture 24 Slide 13

Reading

▶ Appel and Ginsburg, Modern Compiler Implementation in C,
Sections 3.1 and 3.2. Online access via UoE library.
More detail than we need: covers the algorithm for
constructing the parse table.
Equivalent books exist for ML and Java (but no online library
access for the latter).

▶ Aho, Sethi and Ullman, Compilers: Principles, Techniques,
Tools, Section 4.4. Close to our treatment, but may be hard
to find online.

IADS Lecture 24 Slide 14

