
Compiling Techniques
Lecture 6: Dealing with Ambiguity + Bottom-Up Parsing

Ambiguity Definition

● If a grammar has more than one leftmost (or rightmost) derivation for a single
sentential form, the grammar is ambiguous

● This is a problem when interpreting an input program or when building an
internal representation

2

Ambiguous Grammar: Example Associativity

3

Ambiguous Grammar: example 1

Expr ::= Expr Op Expr | num | id
Op ::= + | ∗

This grammar has multiple leftmost
derivations for x + 2 ∗ y.

One possible derivation
Expr
Expr Op Expr
id(x) Op Expr
id(x) + Expr
id(x) + Expr Op Expr
id(x) + num(2) Op Expr
id(x) + num(2) ∗ Expr
id(x) + num(2) ∗ id (y)

Another possible derivation
Expr
Expr Op Expr
Expr Op Expr Op Expr
id(x) Op Expr Op Expr
id(x) + Expr Op Expr
id(x) + num(2) Op Expr
id(x) + num(2) ∗ Expr
id(x) + num(2) ∗ id (y)

x + (2 * y) (x + 2) * y

Ambiguous Grammar: Example If-Then-Else

4

Ambiguous Grammar: example 2

Stmt ::= if Expr then Stmt
 | if Expr then Stmt else Stmt
 | OtherStmt

Input

if E1 then if E2 then S1 else S2

One possible interpretation

if E1 then
 if E2 then
 S1
else
 S2

Another possible interpretation

if E1 then
 if E2 then
 S1
 else
 S2

Removing Ambiguity

● Must rewrite the grammar to avoid generating the problem
● Match each else to innermost unmatched if (common sense)

5

Unambiguous grammar

Stmt ::= if Expr then Stmt
 | if Expr then WithElse else Stmt
 | OtherStmt

WithElse ::= if Expr then WithElse else WithElse
 | OtherStmt

● Intuition: the WithElse restricts what can appear in the then part
● With this grammar, the example has only one derivation

Derivation with Unambiguous Grammar

6

Stmt ::= if Expr then Stmt
 | if Expr then WithElse else Stmt
 | OtherStmt

WithElse ::= if Expr then WithElse else WithElse
 | OtherStmt

Derivation for: if E1 then if E2 then S1 else S2
Stmt
if Expr then Stmt
if E1 then Stmt
if E1 then if Expr then WithElse else Stmt
if E1 then if E2 then WithElse else Stmt
if E1 then if E2 then S1 else Stmt
if E1 then if E2 then S1 else S2

Deeper Ambiguity

● Ambiguity usually refers to confusion in the CFG (Context Free Grammar)
● Consider the following case: a = f(17)

In Algol-like languages, f could be either a function or an array
● In such case, context is required

○ Need to track declarations
○ Really a type issue, not context-free syntax
○ Requires en extra-grammatical solution
○ Must handle these with a different mechanism

7

Step outside the grammar rather than making it more complex. This will be treated
during semantic analysis.

Ambiguity Final Words

Ambiguity arises from two distinct sources:

● Confusion in the context-free syntax (e.g. if then else)
● Confusion that requires context to be resolved (e.g. array vs function)

Resolving ambiguity:

● To remove context-free ambiguity, rewrite the grammar
● To handle context-sensitive ambiguity delay the detection of such problem

(semantic analysis phase):
For instance, it is legal during syntactic analysis to have: void i ; i=4;

8

Bottom-Up vs. Top-Down Parsers

9

Top-Down Parser

A top-down parser builds a derivation by working from the
start symbol to the input sentence.

Bottom-Up Parser

A bottom-up parser builds a derivation by working from the
input sentence back to the start symbol.

Bottom-Up Parsing: Example

10

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Input: abbcde

Bottom-Up Parsing
 abbcde

Bottom-Up Parsing: Example

11

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Input: abbcde

Bottom-Up Parsing
 abbcde

aAbcde

Bottom-Up Parsing: Example

12

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Input: abbcde

Bottom-Up Parsing
 abbcde

aAbcde
aAde

Bottom-Up Parsing: Example

13

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Input: abbcde

Bottom-Up Parsing
 abbcde

aAbcde
aAde
aABe

Bottom-Up Parsing: Example

14

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Input: abbcde

Bottom-Up Parsing
 abbcde

aAbcde
aAde
aABe
Goal

productions
(follow rightmost

derivation)

reductions

Leftmost vs. Rightmost derivation

Leftmost derivation

Rewrite leftmost
nonterminal next

Rightmost derivation

Rewrite rightmost
nonterminal next

15

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Leftmost derivation
LL Parser (Top-Down)

 Goal
 aABe
 aAbcBe
 abbcBe
 abbcde

Rightmost derivation
LR Parser (Bottom-Up)

 Goal
 aABe
 aAde
 aAbcde
 abbcde

Shift-reduce parser

Consists of a stack and the input

Uses four actions:

1. shift: next symbol is shifted onto the stack
2. reduce: pop the symbols Yn, …, Y1 from the stack that form the rhs of a

production rule X ::= Yn, …, Y1
3. accept: stop parsing and report success
4. error: reporting an error

16

How does the parser know when to shift or when to reduce?

Similarly to the top-down parser, can back-track if wrong decision made or try to look ahead.
Can build a DFA to decide when to shift or to reduce.

Shift-reduce parser: Example

17

Example: CFG

Goal ::= a A B e
A ::= A b c | b
B ::= d

Operations

shift
shift
reduce
shift
shift
reduce
shift
reduce
shift
reduce
accept

Input

abbcde
bbcde
bcde
bcde
cde
de
de
e
e

Stack

a
ab
aA
aAb
aAbc
aA
aAd
aAB
aABe
Goal

Choice here: shift or reduce?

Can lookahead one symbol to make decision.

(Knowing what to do needs analysis of the
grammar, see Engineering a Compiler §3.5)

Top–Down vs Bottom-Up Parsing

18

Top-Down Parser

+ Easy to write by hand
+ Easy to integrate with rest of the

compiler

- Recursion might lead to
performance problems

Bottom-Up Parser

+ Very efficient
+ Supports a larger class of

grammars

- Requires generation tools
- Rigid integration with the rest of

the compiler

Last words on Parsing

19

Language != Grammar

 There is more than one grammar that can be used to define a language

 These grammars might be of different “complexity” (LL(1), LL(k), LR(k))

 => Language complexity != grammar complexity

