
Compiling
Techniques
Lecture 1: Introduction

Wikipedia, Public Domain

http://www.youtube.com/watch?v=oE2uls6iIEU&t=30

3

brittanica.com

Harvard Mark I, 1943

Program Tape of The Mark I

4
wikipedia.org

First Bug!

A Patch!

wikipedia.org

Grace Murray Hopper Collection, 1944-1965, Archives Center, National Museum of American History

Grace Murray Hopper

● 1906 Born

● 1934 PhD in Mathematics @ Yale
(very unusual for women at this time)

● 1943 US Navy to work on Mark I

● 1946 Wrote Mark I Manual
https://chsi.harvard.edu/harvard-ibm-mark-1-manual

● 1952 Developed the first compiler (for the A-0 system)

● 1959 Defined COBOL (as part of a larger committee)

● … ⇨ https://www.youtube.com/watch?v=wEC30qhXPp0

1905, first practical plane

https://chsi.harvard.edu/harvard-ibm-mark-1-manual
https://www.youtube.com/watch?v=wEC30qhXPp0

Lecturers

 Amir Shaikhha
 Reader in Compilers and Databases
 https://amirsh.github.io

6

 Jackson Woodruff
 Lecturer in Compiling Techniques
 https://jacksonwoodruff.com/

https://amirsh.github.io
https://jacksonwoodruff.com/

Essentials

Website Learn: Compiling Techniques (2024-2025) [Sem 2]

Discussions Follow link “Discussions (Piazza)” on Learn

Textbook Keith Cooper & Linda Torczon: Engineering a
Compiler Elsevier (not strictly required)

7

https://www.learn.ed.ac.uk/ultra/courses/_120868_1/outline

Essentials

● Course is 20 credits
● Evaluation

○ No exam ⇒ Coursework only
● A lot of programming

○ A lot of hours on coursework
○ Python is the primary language we use

● Each week
○ 3h lectures

■ Monday 15:10 - 16:30, GS50, Lecture Theater G.03
■ Thursday 15:10 - 16:00, Medical School, Teviot, G.07 Meadows Lecture Theatre

○ 2h labs
■ Wednesday 16:10 - 17:30, Appleton Tower, 5.05 West lab

OR
■ 2h labs, Thursday 16:10 - 17:30, Appleton Tower, 6.06

8

Coursework: A Python to RISC-V Compiler

9

ChocoPy AST IR RISC-V

CW1 (30%)
Parsing

CW2 (30%)
Semantic Analysis

CW3 (40%)
Code Generation

Coursework Schedule

10

Week 1 (Jan 13) Week 6 (Feb 24)
CW2

Week 2 (Jan 20) Week 7 (Mar 3)

Week 3 (Jan 27) Week 8 (Mar 10)

Week 4 (Feb 3)
CW1

Week 9 (Mar 17)

CW3
Week 5 (Feb 10) Week 10 (Mar 24)

Learning Week Week 11 (Mar 31)

Week 11+1 (Apr 7)

Deadlines: Friday noon

Marking and Autograding

11

✅
Auto

Marking

Labs

12

● Will help you with coursework

● 1 session of 2 hours (two options)

● Start: Week 3
● End: Week 11

● Time: Wednesday/Thursday 16:10 - 17:30
● Location Appleton Tower, 5.05/6.06

Coursework is Rewarding

13

You will understand what happens when you type:

$ python program.py

But also:

● Will deepened your understanding of computing systems
(from language to hardware)

● Will improve your programming skills
● Will learn about using revision control system (git)

Class-taking Technique

14

● Extensive use of projected material
○ Attendance and interaction encouraged
○ Feedback also welcome

● Reading book is optional
(course is self-contain, book is more theoretical)

● Not a programming course!
● Start the practical early
● Help should be sought on Piazza in the first instance

Syllabus

15

● Overview
● Scanning
● Parsing
● Abstract Syntax Tree
● Semantic analysis
● Code generation
● Real machines assembly
● Advanced topics

○ Instruction selection
○ Register allocation

Compilers

16

What is a Compiler?

A program that translates an executable
program in one language into an executable
program in another language. The compiler
might improve the program, in some way.

What is an Interpreter?

A program that directly executes an executable
program, producing the results of executing that
program

Examples:
● C and C++ are typically compiled
● R is typically interpreted
● Java and Python are compiled to a bytecode and then either

interpreted or compiled.

A Broader View

17

Compiler technology = Off-line processing

● Goals: improved performance and language usability
● Making it practical to use the full power of the language
● Trade-off: preprocessing time versus execution time (or space)
● Rule: performance of both compiler and application must be acceptable to the

end user

Examples:
○ Macro expansion / Preprocessing
○ Database query optimisation
○ Javascript just-in-time compilation
○ Emulation: e.g. Apple’s Intel transition from PowerPC (2006)

System Stack

18

Problem

Algorithm

Program (Language)

Runtime System (OS)

ISA (Architecture)

Micro-Architecture

Logic

Circuits

Electrons

Compilation

Why Study Compilation?

19

● Compilers are important system software components:
they are intimately interconnected with architecture, systems, programming
methodology, and language design

● Compilers include many applications of theory to practice:
scanning, parsing, static analysis, instruction selection

● Many practical applications have embedded languages:
commands, macros, formatting tags

● Many applications have input formats that look like languages:
Matlab, Mathematica

● Writing a compiler exposes practical algorithmic & engineering issues:
approximating hard problems; efficiency & scalability

Intrinsic Interest

20

Artificial Intelligence Greedy algorithms
Heuristic search techniques

Algorithms Graph algorithms
Dynamic programming

Theory DFA & PDA, pattern matching,
Fixed-point algorithms

Systems Allocation & naming,
Synchronization, locality

Architecture Pipeline & memory hierarchy management
Instruction set

Software Engineering Design pattern (visitor)
Code organisation

Ideas from many different

areas of computer science!

Intrinsic Merit

21

Compiler construction poses challenging and interesting problems:

● Compilers must do a lot but also run fast
● Compilers have primary responsibility for run-time performance
● Compilers are responsible for making it acceptable to use the full power of the

programming language
● Computer architects perpetually create new challenges for the compiler by

building more complex machines
● Compilers must hide that complexity from the programmer
● Success requires mastery of complex interactions

Making Languages Available

22

It was our belief that if FORTRAN, during its first months, were to translate any reasonable ”scientific”
source program into an object program only half as fast as its hand coded counterpart, then acceptance
of our system would be in serious danger. . . . I believe that had we failed to produce efficient programs,
the widespread use of languages like FORTRAN would have been seriously delayed.
John Backus (1978)

Next Lecture

The View from 35000 Feet

● How a compiler works
● What I think is important
● What is hard and what is easy

23

