Algorithmic Game Theory and Applications

The Simplex Method

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Linear Programs in Standard Form

maximise
$$\sum_{j=1}^{n} c_j x_j$$
 subject to
$$\sum_{j=1}^{n} \alpha_{ij} x_j \leq b_i, \quad i=1,...,m$$

$$x_j \geq 0, \quad j=1,...,n$$

Given a Linear Program (LP) in standard form:

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that maximises the objective function), or

Return that the LP is infeasible, or

Return that the LP is unbounded.

The Simplex Method (explained via example)

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

For each constraint we introduce a slack variable:

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3 \ge 0$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3 \ge 0$

Is this equivalent to the original LP?

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

For each constraint we introduce a slack variable:

e.g., for the constraint $2x_1 + 3x_2 + x_3 \le 5$, we introduce variable w_1 and we write

$$w_1 = 5 - 2x_1 - 3x_2 - x_3$$

We also introduce a slack variable ζ for the objective function.

Maximise
$$\zeta = 5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Improve this solution to some $\bar{x}_1, \bar{x}_2, \bar{x}_3, \bar{w}_1, \bar{w}_2, \bar{w}_3$ such that $5\bar{x}_1 + 4\bar{x}_2 + 3\bar{x}_3 > 5x_1 + 4x_2 + 3x_3$

Continue until no further improvement is possible (in that case we are at an optimal solution).

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Start with a feasible solution $x_1, x_2, x_3, w_1, w_2, w_3$

Suggestions?

$$x_1 = x_2 = x_3 = 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

A solution obtained by setting all the nonbasic variables to 0 is called a basic feasible solution.

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Step 2: Improving the solution

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

$$w_1 = 5$$
 $-2 x_1$ $-3 x_2$ $- x_3$
 $w_2 = 11$ $-4 x_1$ $- x_2$ $-2 x_3$
 $w_3 = 8$ $-3 x_1$ $-4 x_2$ $-2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Step 2: Improving the solution

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

Step 2: Improving the solution

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

$$w_2 = 11$$
 $-4 x_1 - x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

We can increase the value of some nonbasic variable, e.g., x_1

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise $\zeta = +5 x_1 +4 x_2 +3 x_3$

subject to $w_1 = 5$ $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For w_1 , x_1 can become as large as 5/2 = 30/12.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = 5/2, \quad x_2 = x_3 = 0$$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

For w_1 , x_1 can become as large as 5/2 = 30/12.

For w_2 , x_1 can become as large as 11/4 = 33/12.

For w_3 , x_1 can become as large as 32/12.

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3 \ w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ w_2 = 11 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ leaving variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3$ } just rearranging $w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3$ $w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ leaving variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 \ x_1 \ -3 \ x_2 \ -x_3$ } just rearranging $w_2 = 11 \ -4 \ x_1 \ -x_2 \ -2 \ x_3$ what about here? $w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ }

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ w_2 = 11 \ w_3 = 8 \ -3 \ x_1 \ -4 \ x_2 \ -2 \ x_3$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

$$x_1 = 5/2$$
, $x_2 = x_3 = 0$ $w_1 = 0$, $w_2 = 1$, $w_3 = 1/2$

We need to rearrange the inequalities, so that x_1 now only appears on the left.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

$$+5 x_1$$

$$+4 x_2$$

$$+3 x_3$$

subject to
$$w_1 = 5$$
 $-2 x_1 -3 x_2 -x_3$ $w_2 = 11 -4 x_1 -x_2 -2 x_3$ $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$

just rearranging

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 subject to $w_1 = 5 \quad -2 \ x_1 \quad -3 \ x_2 \quad -x_3 \quad \ \ \,$ just rearranging $w_2 = 11 \quad -4 \ x_1 \quad -x_2 \quad -2 \ x_3 \quad \ \ \,$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 subject to $w_1 = 5 \quad -2 \ x_1 \quad -3 \ x_2 \quad -x_3 \quad \ \ \,$ just rearranging $w_2 = 11 \quad -4 \ x_1 \quad -x_2 \quad -2 \ x_3 \quad \ \ \,$ what about here? "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \geq 0$

Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

$$\Rightarrow w_2 = 1 + 2w_1 + 5x_2$$

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 subject to $w_1 = 5 -2 \ x_1 -3 \ x_2 -x_3 \ w_2 = 11 -4 \ x_1 -x_2 -2 \ x_3 \ what about here? $w_3 = 8 -3 \ x_1 -4 \ x_2 -2 \ x_3$ "row operations" $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Notice that
$$w_2 - 2w_1 = 11 - 4x_1 - x_2 - 2x_3 - 10 + 4x_1 + 6x_2 + 2x_3$$

$$\Rightarrow w_2 = 1 + 2w_1 + 5x_2$$
 x_1 has been eliminated

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

$$w_1 = 0, x_2 = 0 x_3 = 0$$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$

$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$

Maximise $\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$ the objective function value has increased

$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$

basic variables

$$w_1 = 0$$
, $x_2 = 0$ $x_3 = 0$ $x_1 = 2.5$, $w_2 = 1$, $w_3 = 0.5$

Which variable should we try to increase next?

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5. For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5 x_2$ $-0.5 x_3$ $w_2 = 1$ $+2 w_1$ $+5 x_2$ $w_3 = 0.5$ $+1.5 w_1$ $+0.5 x_2$ $-0.5 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_3 = 1$$
, $w_1 = x_2 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ $-1.5 x_2$ $-0.5 x_3$ $w_2 = 1$ $+2 w_1$ $+5 x_2$ $w_3 = 0.5$ $+1.5 w_1$ $+0.5 x_2$ $-0.5 x_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ -1.5 x_2 -0.5 x_3 $w_2 = 1$ $+2$ w_1 $+5$ x_2 entering variable $w_3 = 0.5$ $+1.5$ w_1 $+0.5$ x_2 -0.5 x_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ -1.5 x_2 $-0.5x_3$ $w_2 = 1$ $+2$ w_1 $+5$ x_2 entering variable $w_3 = 0.5$ $+1.5$ w_1 $+0.5$ x_2 -0.5 x_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_3 = 1$$
, $w_1 = x_2 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 0$

For x_1 , x_3 can become as large as 2.5/0.5 = 5.

For w_2 , x_3 can become as large as ∞ .

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$

Maximise $\zeta = 13$ - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 +2 w_1 +5 x_2 1 +3 w_1 + x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased

$$x_1 = 2$$

$$w_2 = 1$$

$$x_3 = 1$$

subject to
$$x_1 = 2$$
 -2 w_1 -2 x_2 $+$ w_3 $w_2 = 1$ $+2$ w_1 $+5$ x_2 $+3$ w_1 $+$ x_2 -2 w_3 nonbasic variables $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased

$$x_1 = 2$$

$$w_2 = 1$$

$$x_3 = 1$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

basic variables

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Which variable should we try to increase next?

Maximise
$$\zeta = 13 - w_1 - 2 x_2 - w_3$$

the objective function value has increased

$$-2 w_1 -2 x_2 + w_3$$
 $+2 w_1 +5 x_2$
 $+3 w_1 + x_2 -2 w_3$

$$x_1, x_2, x_3, w_1, w_2, w_3 > 0$$

basic variables

$$w_1 = 0$$
, $x_2 = 0$ $w_3 = 0$ $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

$$x_1 = 2$$
, $w_2 = 1$, $w_3 = 1$

Which variable should we try to increase next? We have computed an optimal solution!

1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

Let's do it again, "mechanically"

Maximise
$$5x_1 + 4x_2 + 3x_3$$

subject to
$$2x_1 + 3x_2 + x_3 \le 5$$

 $4x_1 + x_2 + 2x + 3 \le 11$
 $3x_1 + 4x_2 + 2x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

1. Introduce slack variables

$$x_{n+1}, x_{n+2}, ..., x_m$$
 and ζ .

Maximise
$$\zeta = 5x_1 + 4x_2 + 3x_3$$

subject to
$$w_1 = 5 - 2x_1 + 3x_2 + x_3$$

 $w_2 = 11 - 4x_1 + x_2 + 2x + 3$
 $w_3 = 8 - 3x_1 + 4x_2 + 2x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

2. Write the original dictionary.

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$

 $w_1 = 5, w_2 = 11, w_3 = 8$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $x_1 = x_2 = x_3 = 0$

 $w_1 = 5, w_2 = 11, w_3 = 8$

 $x_1 = x_2 = x_3 = 0$

Maximise
$$\zeta = +5 x_1 +4 x_2 +3 x_3$$

subject to $w_1 = 5 -2 x_1 -3 x_2 -x_3$
 $w_2 = 11 -4 x_1 -x_2 -2 x_3$
 $w_3 = 8 -3 x_1 -4 x_2 -2 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = +5 \ x_1 + 4 \ x_2 + 3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 - 3 \ x_2 - x_3$ $w_2 = 11 \ -4 \ x_1 - x_2 - 2 \ x_3$ $w_3 = 8 \ -3 \ x_1 - 4 \ x_2 - 2 \ x_3$ $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 -3 \ x_2 -x_3 \ w_2 = 11 \ -4 \ x_1 -x_2 -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 -4 \ x_2 -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

 $w_1 = 5, w_2 = 11, w_3 = 8$

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

 $x_1 = x_2 = x_3 = 0$

Maximise
$$\zeta = +5 \ x_1 +4 \ x_2 +3 \ x_3$$
 entering variable subject to $w_1 = 5 \ -2 x_1 -3 \ x_2 -x_3 \ w_2 = 11 \ -4 \ x_1 -x_2 -2 \ x_3 \ w_3 = 8 \ -3 \ x_1 -4 \ x_2 -2 \ x_3 \ x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

 $w_1 = 5, w_2 = 11, w_3 = 8$

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

$$5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$$

 $x_1 = x_2 = x_3 = 0$

$$x_1 = x_2 = x_3 = 0$$
 $w_1 = 5, w_2 = 11, w_3 = 8$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

$$5/2 \text{ vs } 11/4 \text{ vs } 8/3 \Rightarrow w_1$$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

$$x_1 = 2.5, x_2 = 0, x_3 = 0$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_{l} only appears on the left.

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$ entering variable
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$ entering variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 12.5 - 2.5 \ w_1 - 3.5 \ x_2 + 0.5 \ x_3$$

subject to $x_1 = 2.5 - 0.5 \ w_1 - 1.5 \ x_2 - 0.5 \ x_3$
 $w_2 = 1 + 2 \ w_1 + 5 \ x_2$
 $w_3 = 0.5 + 1.5 \ w_1 + 0.5 \ x_2 - 0.5 \ x_3$ entering variable $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

$$2.5/0.5 \text{ vs} \infty \text{ vs} 0.5/0.5 \Rightarrow w_3$$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to
$$x_1 = 2.5$$
 $-0.5w_1$ -1.5 x_2 $-0.5x_3$ $w_2 = 1$ $+2$ w_1 $+5$ x_2 entering variable $w_3 = 0.5$ $+1.5$ w_1 $+0.5$ x_2 -0.5 x_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = x_3 = 0$$
 $x_1 = 2.5, w_2 = 1, w_3 = 0.5$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

$$2.5/0.5 \text{ vs} \infty \text{ vs} 0.5/0.5 \Rightarrow w_3$$

5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$

Maximise
$$\zeta = 12.5 - 2.5 w_1 - 3.5 x_2 + 0.5 x_3$$

subject to $x_1 = 2.5 - 0.5 w_1 - 1.5 x_2 - 0.5 x_3$
 $w_2 = 1 + 2 w_1 + 5 x_2$
 $w_3 = 0.5 + 1.5 w_1 + 0.5 x_2 - 0.5 x_3$
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$x_1 = 2.5, x_2 = 0, x_3 = 1$$

6. Compute the new dictionary making sure x_k only appears on the left.

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $w_1 = x_2 = w_3 = 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

 $x_1 = 2$, $w_2 = 1$, $w_3 = 1$

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

 $w_1 = x_2 = w_3 = 0$

The Simplex Method

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

The Simplex Method

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_k only appears on the left.

The Simplex Method

- 1. Introduce slack variables $x_{n+1}, x_{n+2}, ..., x_m$ and ζ .
- 2. Write the original dictionary.

Repeat:

- 3. Find a basic feasible solution by setting the nonbasic variables to 0.
- 4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

- 5. Increase the value of the entering variable to be $x_k = \min_{i:\hat{a}_{ik}>0} \hat{b}_i/\hat{a}_{ik}$
- 6. Compute the new dictionary making sure x_{l} only appears on the left.

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3 subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3 $w_2 = 1$ +2 w_1 +5 x_2 $x_3 = 1$ +3 w_1 + x_2 -2 w_3 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

$$w_1 = x_2 = w_3 = 0$$
 $x_1 = 2, w_2 = 1, w_3 = 1$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Maximise
$$\zeta = 13$$
 - w_1 -2 x_2 - w_3
subject to $x_1 = 2$ -2 w_1 -2 x_2 + w_3
 $w_2 = 1$ +2 w_1 +5 x_2
 $x_3 = 1$ +3 w_1 + x_2 -2 w_3
 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$
 $w_1 = x_2 = w_3 = 0$ $x_1 = 2, w_2 = 1, w_3 = 1$

We have computed an optimal solution!

Potential Problem

Potential Problem

Consider the following LP:

Potential Problem

Consider the following LP:

$$Maximise - 2x_1 - x_2$$

subject to
$$-x_1 + x_2 \le -1$$

 $-x_1 - 2x_2 \le -2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$
 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$w_1 = x_2 = x_3 = 0$$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

The dictionary is infeasible!

Maximise
$$\zeta = -2 \ x_1 - x_2$$

subject to $w_1 = -1 + x_1 - x_2$
 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = x_2 = x_3 = 0$$
 $w_1 = -1, w_2 = -2, w_3 = 1$

The dictionary is infeasible!

This can be handled via an appropriate "trick", see Vanderbei Chapter 2.

Consider the following LP:

$$Maximise - 2x_1 - x_2$$

subject to
$$-x_1 + x_2 \le -1$$

 $-x_1 - 2x_2 \le -2$
 $x_2 \le 1$
 $x_1, x_2 \ge 0$

Consider the following alternative LP:

Maximise
$$-x_0$$

subject to
$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to
$$-x_1 + x_2 \le -1$$
 $-x_1 - 2x_2 \le -2$ $x_2 \le 1$ $x_1, x_2 \ge 0$

Maximise
$$-x_0$$

subject to $-x_1 + x_2 - x_0 \le -1$
 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

subject to
$$-x_1 + x_2 \le -1$$
 $-x_1 - 2x_2 \le -2$

$$x_2 \le 1$$

$$x_1, x_2 \ge 0$$

The first LP is feasible if any only if the second LP has an optimal solution of value 0.

$$-x_1 + x_2 - x_0 \le -1$$

$$-x_1 - 2x_2 - x_0 \le -2$$

$$x_2 - x_0 \le 1$$

$$x_1, x_2, x_0 \ge 0$$

Consider the following alternative LP:

Maximise
$$-x_0$$

subject to
$$-x_1 + x_2 - x_0 \le -1$$

 $-x_1 - 2x_2 - x_0 \le -2$
 $x_2 - x_0 \le 1$
 $x_1, x_2, x_0 \ge 0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Maximise
$$\zeta = -x_0$$

subject to $w_1 = -1$ $+ x_1 - x_2 + x_0$
 $w_2 = -2$ $+ x_1 + 2 x_2 + x_0$
 $w_3 = 1$ $- x_2 + x_0$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Maximise
$$\zeta = -x_0$$
 subject to $w_1 = -1 + x_1 - x_2 + x_0$ entering variable $w_2 = -2 + x_1 + 2 x_2 + x_0$ $w_3 = 1 - x_2 + x_0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0

Maximise
$$\zeta = -x_0$$
 subject to $w_1 = -1 + x_1 - x_2 + x_0 + x_1 + 2 x_2 + x_0$ entering variable $w_2 = -2 + x_1 + 2 x_2 + x_0$ $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

Maximise
$$\zeta=$$

$$-x_0$$
 subject to $w_1=-1$ $+x_1$ $-x_2$ $+x_0$ entering variable leaving variable
$$w_2=-2$$
 $+x_1$ $+2$ x_2 $+x_0$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_0$ $+x_1$ $+x_2$ $+x_0$ $+x_0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

Auxiliary problem dictionary

Maximise
$$\zeta=$$

$$-x_0$$
 subject to $w_1=-1$ $+x_1$ $-x_2$ $+x_0$ entering variable
$$w_2=-2$$
 $+x_1$ $+2$ x_2 $+x_0$ $-x_2$ $+x_0$ $x_1,x_2,w_1,w_2,w_3,x_0 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

The dictionary is infeasible!

Entering variable: x_0 Leaving variable: the one that is "most infeasible"

6. Compute the new dictionary making sure x_0 only appears on the left.

The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to
$$w_1 = 1$$
 $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to $w_1 = 1 -3 x_2 + w_2$
 $x_0 = 2 - x_1 -2 x_2 + w_2$
 $w_3 = 3 - x_1 -3 x_2 + w_2$
 $x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$

The dictionary is feasible, we can apply the simplex method.

The new auxiliary problem dictionary

Maximise
$$\zeta = -2 + x_1 + 2 x_2 - w_2$$

subject to
$$w_1 = 1$$
 $-3 x_2 + w_2$ $x_0 = 2 - x_1 -2 x_2 + w_2$ $w_3 = 3 - x_1 -3 x_2 + w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The dictionary is feasible, we can apply the simplex method.

The final auxiliary problem dictionary

Maximise
$$\zeta = -x_0$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33 - x_0 + 0.67 w_1 + 0.33 w_2$ $w_3 = 2 + x_0 + 0.33 w_1 + 0.33 w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

The final auxiliary problem dictionary

$$\mathbf{Maximise} \qquad \zeta = -x_0$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33 - x_0 + 0.67 w_1 + 0.33 w_2$ $w_3 = 2 + x_0 + 0.33 w_1 + 0.33 w_2$

$$x_1, x_2, w_1, w_2, w_3, x_0 \ge 0$$

Remove x_0 from the constraints and substitute the original objective function.

$$\zeta =$$

$$-2 x_1$$

$$-x_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$

$$x_1 = 1.33$$

$$w_3 = 2$$

$$-0.33 w_1 + 0.33 w_2$$

$$+0.67w_1 +0.33w_2$$

$$+0.33 w_1 +0.33 w_2$$

$$x_1, x_2, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = -2 x_1 - x_2$$

subject to $x_2 = 0.33$ $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We should have only nonbasic variables in the objective function.

Easy Fix

subject to $w_1 = -1$ + x_1 - x_2 $w_2 = -2$ + x_1 + x_2 $w_3 = 1$ - x_2

 $x_1, x_2, w_1, w_2, w_3 \ge 0$

Easy Fix

subject to
$$w_1 = -1 + x_1 - x_2$$

 $w_2 = -2 + x_1 + 2 x_2$
 $w_3 = 1 - x_2$

$$x_1, x_2, w_1, w_2, w_3 \ge 0$$

We have $\zeta = -2x_1 - x_2 = -3 - w_1 - w_2$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$

$$x_1 = 1.33$$

$$w_3 = 2$$

$$-0.33 w_1 + 0.33 w_2$$

$$+0.67w_1 +0.33w_2$$

$$+0.33 w_1 +0.33 w_2$$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

Maximise
$$\zeta = -3 \ w_1 - w_2$$

subject to $x_2 = 0.33 \ -0.33 \ w_1 + 0.33 \ w_2$
 $x_1 = 1.33 \ +0.67 \ w_1 + 0.33 \ w_2$
 $w_3 = 2 \ +0.33 \ w_1 + 0.33 \ w_2$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to
$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$ $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$ $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

 $x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to $x_2 = 0.33$

$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We have found an optimal solution!

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise

$$\zeta =$$

$$-3 w_1 - w_2$$

subject to

$$x_2 = 0.33$$
 $-0.33 w_1 + 0.33 w_2$
 $x_1 = 1.33$ $+0.67 w_1 + 0.33 w_2$
 $w_3 = 2$ $+0.33 w_1 + 0.33 w_2$

We have found an optimal solution!

We were lucky: we can only expect to find a feasible solution.

$$x_1, x_2, x_3, w_1, w_2, w_3 \ge 0$$

3. Find a basic feasible solution by setting the nonbasic variables to 0.

$$w_1 = w_2 = 0$$

$$x_1 = 1.33, x_2 = 0.33, w_3 = 2$$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Maximise
$$\zeta = 5 + x_3 - x_1$$

subject to $x_2 = 5 + 2 x_3 - 3 x_1$
 $x_4 = 7 - 4 x_1$
 $x_5 = x_1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

Maximise

$$\zeta = 5$$

 $\zeta = 5 + \left(x_3\right)$

entering variable

subject to $x_2 = 5 + 2 x_3$

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$+2 x_3 -3 x_1$$

$$-4 x_1$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio \hat{b}_i/\hat{a}_{ik} (for the constraint $\hat{b}_i-\hat{a}_{ik}x_k\geq 0$).

$$\zeta = 5$$

Maximise
$$\zeta = 5 + (x_3) - x_1$$

entering variable

subject to $x_2 = 5 + 2 x_3$

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$+2 x_3 -3 x_1$$

$$-4 x_1$$

 x_1

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

Maximise
$$\zeta = 5 + x_3 - x_1$$
 entering variable subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1, x_2, x_3, x_4, x_5 \ge 0$

We can increase the value of some nonbasic variable, here x_3

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise $\zeta = 5 + x_3 - x_1$ entering variable subject to $x_2 = 5 + 2 x_3 - 3 x_1$ $x_4 = 7 - 4 x_1$ $x_5 = x_1$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise

$$\zeta = 5$$

entering variable

subject to

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$x_2 = 5 + 2 x_3 - 3 x_1$$

$$-4 x_1$$

 x_1

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The LP is unbounded!

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$
subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$
 $w_2 = x_1 - x_2 + w_1$
 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$
subject to $x_3 = 1$ $x_1 - 0.5 x_1 -0.5 w_1$ entering variable $x_1, x_2, x_3, w_1, w_2 \ge 0$

$$\zeta = \zeta$$

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$

subject to $x_3 = 1$

$$x_3 = 1$$

entering variable

leaving variable

$$-0.5 x_1$$
 $-0.5 w_1$ x_1 $-0.5 w_1$

 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise
$$\zeta=3$$
 $-0.5\ x_1+2\ x_2-1.5\ w_1$ subject to $x_3=1$ $-0.5\ x_1$ $-0.5\ w_1$ entering variable $x_1-x_2,x_3,w_1,w_2\geq 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

Maximise
$$\zeta=3$$
 $-0.5 \ x_1 + 2 \ x_2 - 1.5 \ w_1$ subject to $x_3=1$ $-0.5 \ x_1$ $-0.5 \ w_1$ entering variable $x_1 - x_2 + x_1$ $x_2, x_3, w_1, w_2 \ge 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Degeneracy

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic variables is 0.

Degeneracy not necessarily and issue

$$\zeta = \zeta$$

entering variable

subject to $x_2 = 5 + 2 x_3$

$$x_2 = 5$$

$$x_4 = 7$$

$$x_5 =$$

$$+2 x_3 -3 x_1$$

$$-4 x_1$$

 χ_1

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

The LP is unbounded!

We can increase the value of some nonbasic variable, here x_3

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic variables is 0.

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic variables is 0.

Degenerate Pivot: The entering variable stays at 0 without increasing.

What about this dictionary?

Maximise
$$\zeta=3$$
 $-0.5 \ x_1 + 2 \ x_2 - 1.5 \ w_1$ subject to $x_3=1$ $-0.5 \ x_1$ $-0.5 \ w_1$ entering variable $x_1 - x_2 + x_1$ $x_2, x_3, w_1, w_2 \ge 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic variables is 0.

Degenerate Pivot: The entering variable stays at 0 without increasing.

Degeneracy

Degenerate dictionary: A dictionary in which one of the b_i variables becomes zero.

Equivalently: In a basic feasible solution, one of the basic variables is 0.

Degenerate Pivot: The entering variable stays at 0 without increasing.

"Degenerate pivots are quite common and usually harmless."

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$

subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$ entering variable $x_1 - x_2 + x_1 - x_2 + x_1$ $x_1 - x_2 + x_2 -1$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

 x_2 cannot be increased! Are we stuck?

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 -1.5 w_1$

subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$ entering variable $x_1 - x_2 + x_1 - x_2 + x_1$ $x_1 - x_2 + x_2 - 1$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Maximise
$$\zeta=3$$
 $-0.5 \ x_1 + 2 \ x_2 - 1.5 \ w_1$ subject to $x_3=1$ $-0.5 \ x_1$ $-0.5 \ w_1$ entering variable $x_1 - x_2 + x_1 - x_2 = 0$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase

Maximise
$$\zeta=3$$
 $-0.5 \ x_1 + 2 \ x_2 - 1.5 \ w_1$ subject to $x_3=1$ $-0.5 \ x_1$ $-0.5 \ w_1$ entering variable $x_1, x_2, x_3, w_1, w_2 \ge 0$

Actually pivot!

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase

Maximise
$$\zeta = 3$$
 $-0.5 x_1 + 2 x_2 - 1.5 w_1$

subject to $x_3 = 1$ $-0.5 x_1$ $-0.5 w_1$ entering variable $w_2 = 0.5 x_1 + 0.5 x_1$

 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Actually pivot!

$$(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$$

We can increase the value of some nonbasic variable, here x_2

We should not violate any constraints though!

We don't want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase

Maximise
$$\zeta = 3 + 1.5 x_1 + 2 w_2 + 0.5 w_1$$

subject to $x_3 = 1 -0.5 x_1 -0.5 w_1$
 $x_2 = x_1 - w_2 + w_1$
 $x_1, x_2, x_3, w_1, w_2 \ge 0$

 $(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$

Maximise
$$\zeta = 3 + 1.5 x_1 + 2 w_2 + 0.5 w_1$$

subject to $x_3 = 1 -0.5 x_1 -0.5 w_1$
 $x_2 = x_1 - w_2 + w_1$
 $x_1, x_2, x_3, w_1, w_2 \ge 0$

Maximise
$$\zeta = 3$$
 +1.5 x_1 +2 w_2 +0.5 w_1 entering variable subject to $x_3 = 1$ $x_1 - w_2 + w_1$ $x_2 = 0$ $(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$

Maximise
$$\zeta = 3$$
 +1.5 x_1 +2 w_2 +0.5 w_1 entering variable subject to $x_3 = 1$ -0.5 x_1 $x_1 - w_2 + w_1$ $x_1, x_2, x_3, w_1, w_2 \ge 0$

 $(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$

 $(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$

Maximise
$$\zeta=3+1.5\,x_1+2\,w_2+0.5\,w_1$$
 entering variable subject to $x_3=1$ $x_1-0.5\,x_1-0.5\,w_1$ leaving variable $x_2=1$ $x_1-x_2,x_3,w_1,w_2\geq 0$

We can now increase x_1 to $x_1 = 2$

Maximise
$$\zeta=3+1.5\,x_1+2\,w_2+0.5\,w_1$$
 entering variable subject to $x_3=1$ $-0.5\,x_1$ $-0.5\,w_1$ leaving variable $x_2=1$ $x_1,x_2,x_3,w_1,w_2\geq 0$

$$(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$$

We can now increase x_1 to $x_1 = 2$

The pivot is not degenerate!

Maximise
$$\zeta=3+1.5\,x_1+2\,w_2+0.5\,w_1$$
 entering variable subject to $x_3=1$ $-0.5\,x_1$ $-0.5\,w_1$ leaving variable $x_2=1$ $x_1,x_2,x_3,w_1,w_2\geq 0$

 $(x_1, x_2, x_3, w_1, w_2) = (0,0,1,0,0)$

We can now increase x_1 to $x_1 = 2$

The pivot is not degenerate!

It will actually lead to a final dictionary, and an optimal solution.

Dictionary 1
Solution 1

Dictionary 1
Solution 1

Cycling

In theory: Cycling can happen.

In theory: Cycling can happen.

In practice: Cycling rarely happens.

In theory: Cycling can happen.

In practice: Cycling rarely happens.

But non-degenerate pivots are quite common.

In theory: Cycling can happen.

In practice: Cycling rarely happens.

But non-degenerate pivots are quite common.

Can we avoid cycling in theory too?

In theory: Cycling can happen.

In practice: Cycling rarely happens.

But non-degenerate pivots are quite common.

Can we avoid cycling in theory too?

Bland's rule: For both the entering variable and the leaving variable, choose the one with the smallest index.

Theorem: If the simplex method does not cycle, it terminates.

Theorem: If the simplex method does not cycle, it terminates.

Proof: A dictionary is determined by which variables are basic and which are non-basic.

Theorem: If the simplex method does not cycle, it terminates.

Proof: A dictionary is determined by which variables are basic and which are non-basic.

There only
$$\binom{n+m}{m} = \frac{(n+m)!}{n!m!}$$
 possibilities.

Theorem: If the simplex method does not cycle, it terminates.

Proof: A dictionary is determined by which variables are basic and which are non-basic.

There only
$$\binom{n+m}{m} = \frac{(n+m)!}{n!m!}$$
 possibilities.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a polynomial-time algorithm.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in exponential running time.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

More good news: "Beyond the worst-case analysis" shows that the algorithm is also efficient in theory.

First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

More good news: "Beyond the worst-case analysis" shows that the algorithm is also efficient in theory.

Even more good news: We have other algorithms that run in worst-case polynomial running time (Ellipsoid Method, Interior Point Methods).