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The Linear Programming 
problem

Given a Linear Program (LP) in standard form:

Return an optimal solution (i.e., a feasible solution that 
maximises the objective function), or

Return that the LP is infeasible , or

Return that the LP is unbounded.



The Simplex Method 
(explained via example)

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x + 3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

Maximise 5x1 + 4x2 + 3x3

subject to

x1, x2, x3 ≥ 0
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Step 1: Slack Variables

For each constraint we introduce a slack variable:

e.g., for the constraint , we introduce 
variable  and we write 
 

2x1 + 3x2 + x3 ≤ 5
w1

w1 = 5 − 2x1 − 3x2 − x3

We also introduce a slack variable  for the objective function.ζ
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w1 = 5 − 2x1 + 3x2 + x3
w2 = 11 − 4x1 + x2 + 2x + 3
w3 = 8 − 3x1 + 4x2 + 2x3

Maximise ζ = 5x1 + 4x2 + 3x3

subject to

x1, x2, x3, w1, w2, w3 ≥ 0
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(strategy)

Start with a feasible solution x1, x2, x3, w1, w2, w3

Improve this solution to some  such that x̄1, x̄2, x̄3, w̄1, w̄2, w̄3
5x̄1 + 4x̄2 + 3x̄3 > 5x1 + 4x2 + 3x3

Continue until no further improvement is possible (in that 
case we are at an optimal solution).
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variables to  is called a basic feasible solution.0
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We don’t want any of the slack variables to become negative.
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Notice that w2 − 2w1 = 11 − 4x1 − x2 − 2x3 − 10 + 4x1 + 6x2 + 2x3

⇒ w2 = 1 + 2w1 + 5x2  has been eliminatedx1
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Which variable should we try to increase next?
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−
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w1 = 0, x2 = 0 w3 = 0
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The New Dictionary
Maximise

subject to

ζ =

x1 =
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+
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the objective function value has increased
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w1 = 0, x2 = 0 w3 = 0 x1 = 2, w2 = 1, w3 = 1



The New Dictionary
Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13

basic variables

nonbasic variables

the objective function value has increased

Which variable should we try to increase next?

w1 = 0, x2 = 0 w3 = 0 x1 = 2, w2 = 1, w3 = 1

We have computed an optimal solution!
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The Simplex Method
1. Introduce slack variables  and .xn+1, xn+2, …, xm ζ

2. Write the original dictionary.

Repeat:

3. Find a basic feasible solution by setting the nonbasic variables to .0

4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).

Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

5. Increase the value of the entering variable to be xk = min
i: ̂aik>0

b̂i / ̂aik

6. Compute the new dictionary making sure  only appears on the left.xk



Let’s do it again, 
“mechanically”

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x + 3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8

Maximise 5x1 + 4x2 + 3x3

subject to

x1, x2, x3 ≥ 0



1. Introduce slack variables 
 and .xn+1, xn+2, …, xm ζ

w1 = 5 − 2x1 + 3x2 + x3
w2 = 11 − 4x1 + x2 + 2x + 3
w3 = 8 − 3x1 + 4x2 + 2x3

Maximise ζ = 5x1 + 4x2 + 3x3

subject to

x1, x2, x3, w1, w2, w3 ≥ 0



2. Write the original 
dictionary.
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subject to

ζ =

w1 =

w2 =

w3 =

+5

5

11

8

−2

−4
−3

x1

x1

x1

x1

+4

−3

−
−4

x2

x2

x2

x2

+3

−2
−2

x3

x3

x3

x3

−

x1, x2, x3, w1, w2, w3 ≥ 0



3. Find a basic feasible solution by 
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Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

5/2 vs 11/4 vs 8/3 ⇒ w1



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).

Maximise

subject to

ζ =

w1 =

w2 =

w3 =

+5

5

11

8

−2

−4
−3

x1

x1

x1

x1

+4

−3

−
−4

x2

x2

x2

x2

+3

−2
−2

x3

x3

x3

x3

−

x1, x2, x3, w1, w2, w3 ≥ 0

x1 = x2 = x3 = 0 w1 = 5,w2 = 11,w3 = 8
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

entering variable

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

5/2 vs 11/4 vs 8/3 ⇒ w1

leaving variable



5. Increase the value of the entering 
variable to be xk = min

i: ̂aik>0
b̂i/ ̂aik

Maximise

subject to

ζ =

w1 =

w2 =

w3 =

+5

5

11

8

−2

−4
−3

x1

x1

x1

x1

+4

−3

−
−4

x2

x2

x2

x2

+3

−2
−2

x3

x3

x3

x3

−

x1, x2, x3, w1, w2, w3 ≥ 0

x1 = 2.5, x2 = 0, x3 = 0



6. Compute the new dictionary making 
sure  only appears on the left.xk

Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

entering variable



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

entering variable



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

2.5/0.5 vs ∞ vs 0.5/0.5 ⇒ w3

entering variable



4. Choose a variable to enter the basis 
(entering variable) and a variable to leave 

the basis (leaving variable).
Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

w1 = x2 = x3 = 0 x1 = 2.5, w2 = 1, w3 = 0.5
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0

2.5/0.5 vs ∞ vs 0.5/0.5 ⇒ w3

entering variable

leaving variable



5. Increase the value of the entering 
variable to be xk = min

i: ̂aik>0
b̂i/ ̂aik

Maximise

subject to

ζ =

x1 =

w2 =

w3 =

−2.5

2.5

1

0.5

−0.5

+2
+1.5

w1

w1

w1

w1

−3.5

−1.5

+5
+0.5

x2

x2

x2

x2

+0.5

−0.5

x3

x3

x3

−0.5

x1, x2, x3, w1, w2, w3 ≥ 0

12.5

x1 = 2.5, x2 = 0, x3 = 1



6. Compute the new dictionary making 
sure  only appears on the left.xk

Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13

w1 = x2 = w3 = 0



3. Find a basic feasible solution by 
setting the nonbasic variables to .0
Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13

w1 = x2 = w3 = 0 x1 = 2, w2 = 1, w3 = 1



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



The Simplex Method
1. Introduce slack variables  and .


2. Write the original dictionary.


Repeat:


3. Find a basic feasible solution by setting the nonbasic variables to .


4. Choose a variable to enter the basis (entering variable) and a variable to leave the basis (leaving 
variable).


Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;


Leaving variable: The variable with the smallest ratio  (for the constraint ).


5. Increase the value of the entering variable to be 


6. Compute the new dictionary making sure  only appears on the left.

xn+1, xn+2, …, xm ζ

0

b̂i / ̂aik b̂i − ̂aikxk ≥ 0

xk = min
i: ̂aik>0

b̂i / ̂aik

xk



Entering variable: Any variable with 
positive coefficient in the objective 

function. If none exists, break;

Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13

w1 = x2 = w3 = 0 x1 = 2, w2 = 1, w3 = 1



Entering variable: Any variable with 
positive coefficient in the objective 

function. If none exists, break;

Maximise

subject to

ζ =

x1 =

w2 =

x3 =

−

2

1

1

−2

+2
+3

w1

w1

w1

w1

−2

−2

+5
+

x2

x2

x2

x2

−

−2

w3

w3

w3

+

x1, x2, x3, w1, w2, w3 ≥ 0

13

w1 = x2 = w3 = 0 x1 = 2, w2 = 1, w3 = 1

We have computed an optimal solution!



Potential Problem



Potential Problem
Consider the following LP:



Potential Problem

−x1 + x2 ≤ − 1
−x1 − 2x2 ≤ − 2

x2 ≤ 1

Maximise − 2x1 − x2

subject to

x1, x2 ≥ 0

Consider the following LP:



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = x2 = x3 = 0



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = x2 = x3 = 0 w1 = − 1, w2 = − 2, w3 = 1



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = x2 = x3 = 0 w1 = − 1, w2 = − 2, w3 = 1
The dictionary is infeasible!



Corresponding dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+

x1

x1

x1

−

−

+2

−

x2

x2

x2

x2

x1, x2, w1, w2, w3 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = x2 = x3 = 0 w1 = − 1, w2 = − 2, w3 = 1
The dictionary is infeasible!

This can be handled via an appropriate “trick”, see Vanderbei Chapter 2.



Initialisation

−x1 + x2 ≤ − 1
−x1 − 2x2 ≤ − 2

x2 ≤ 1

Maximise − 2x1 − x2

subject to

x1, x2 ≥ 0

Consider the following LP:



Initialisation

−x1 + x2 − x0 ≤ − 1
−x1 − 2x2 − x0 ≤ − 2

x2 − x0 ≤ 1

Maximise − x0

subject to

x1, x2, x0 ≥ 0

Consider the following alternative LP:



Initialisation

−x1 + x2 − x0 ≤ − 1
−x1 − 2x2 − x0 ≤ − 2

x2 − x0 ≤ 1

subject to

x1, x2, x0 ≥ 0

−x1 + x2 ≤ − 1
−x1 − 2x2 ≤ − 2

x2 ≤ 1

subject to

x1, x2 ≥ 0

Maximise − x0



Initialisation

−x1 + x2 − x0 ≤ − 1
−x1 − 2x2 − x0 ≤ − 2

x2 − x0 ≤ 1

subject to

x1, x2, x0 ≥ 0

−x1 + x2 ≤ − 1
−x1 − 2x2 ≤ − 2

x2 ≤ 1

subject to

x1, x2 ≥ 0 The first LP is feasible if any only if 
the second LP has an optimal solution 

of value 0. 
Maximise − x0



Initialisation

−x1 + x2 − x0 ≤ − 1
−x1 − 2x2 − x0 ≤ − 2

x2 − x0 ≤ 1

Maximise − x0

subject to

x1, x2, x0 ≥ 0

Consider the following alternative LP:



Auxiliary problem dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−1

−2

1

+

+

x1

x1

−

+2

−

x2

x2

x2

x1, x2, w1, w2, w3, x0 ≥ 0

− x0

x0

x0

x0

+

+

+



Auxiliary problem dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−1

−2

1

+

+

x1

x1

−

+2

−

x2

x2

x2

x1, x2, w1, w2, w3, x0 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

− x0

x0

x0

x0

+

+

+



Auxiliary problem dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−1

−2

1

+

+

x1

x1

−

+2

−

x2

x2

x2

x1, x2, w1, w2, w3, x0 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

The dictionary is infeasible!

− x0

x0

x0

x0

+

+

+



Auxiliary problem dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−1

−2

1

+

+

x1

x1

−

+2

−

x2

x2

x2

x1, x2, w1, w2, w3, x0 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

The dictionary is infeasible!

− x0

x0

x0

x0

+

+

+

Entering variable: x0



Auxiliary problem dictionary
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−1

−2

1

+

+

x1

x1

−

+2

−

x2

x2

x2

x1, x2, w1, w2, w3, x0 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

The dictionary is infeasible!

− x0

x0

x0

x0

+

+

+

entering variable

Entering variable: x0



Auxiliary problem dictionary
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Entering variable: x0 Leaving variable: the one that is “most infeasible”
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−
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Auxiliary problem dictionary
Maximise

subject to

ζ =
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w2 =

w3 =
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x1, x2, w1, w2, w3, x0 ≥ 0

3. Find a basic feasible solution by setting the nonbasic variables to .0

The dictionary is infeasible!
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x0

+

+

+

entering variable
leaving variable

Entering variable: x0 Leaving variable: the one that is “most infeasible”

6. Compute the new dictionary making sure  only appears on the left.x0
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+

+

+
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The dictionary is feasible, we can apply the simplex method.
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+
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The dictionary is feasible, we can apply the simplex method.

steps…
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The final auxiliary problem 
dictionary
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+0.67
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w1
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Remove  from the constraints and substitute the original objective function.x0
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subject to
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We should have only nonbasic variables in the objective function.
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+
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−
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−
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Easy Fix
Maximise

subject to

ζ =

w1 =

w2 =

w3 =

−2

−1

−2

1

+

+
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x1
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−

−

+2

−
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x1, x2, w1, w2, w3 ≥ 0

We have ζ = − 2x1 − x2 = − 3 − w1 − w2
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3. Find a basic feasible solution by setting the nonbasic variables to .0
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w1 = w2 = 0
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w2+0.33

w2+0.33
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3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = w2 = 0 x1 = 1.33, x2 = 0.33, w3 = 2
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;
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original problem
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Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

We have found an 
optimal solution!



The first dictionary of our 
original problem
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subject to

ζ =

x2 =

x1 =

w3 =
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−0.33

+0.67

+0.33

w1

w1

w1

x1, x2, x3, w1, w2, w3 ≥ 0

w2+0.33

w2+0.33
w2+0.33

−3 w1 − w2

3. Find a basic feasible solution by setting the nonbasic variables to .0

w1 = w2 = 0 x1 = 1.33, x2 = 0.33, w3 = 2
Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

We have found an 
optimal solution!

We were lucky: we can 
only expect to find a 

feasible solution.
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−
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Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;
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Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;

Leaving variable: The variable with the smallest ratio  (for the constraint ).b̂i / ̂aik b̂i − ̂aikxk ≥ 0
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Entering variable: Any variable with positive coefficient in the objective function. If none exists, break;
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We can increase the value of some nonbasic variable, here x3
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We should not violate any constraints though!
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We don’t want any of the slack variables to become negative.
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We can increase the value of some nonbasic variable, here x3

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.
This does not happen regardless of how much we increase .x3



What if we have this 
dictionary?
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subject to
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x2 =

x4 =
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−
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x1
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x1

x1

x1, x2, x3, x4, x5 ≥ 0

5
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We can increase the value of some nonbasic variable, here x3

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.
This does not happen regardless of how much we increase .x3

The LP is unbounded!
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x2
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We can increase the value of some nonbasic variable, here x2

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.



What about this dictionary?
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We can increase the value of some nonbasic variable, here x2

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.

 cannot be increased! Are we stuck?x2
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variables becomes zero.
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Degeneracy

Degenerate dictionary: A dictionary in which one of the  
variables becomes zero.

bi

Equivalently: In a basic feasible solution, one of the basic 
variables is 0.



Degeneracy not 
necessarily and issue
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We can increase the value of some nonbasic variable, here x3

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.
This does not happen regardless of how much we increase .x3

The LP is unbounded!
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Degeneracy

Degenerate dictionary: A dictionary in which one of the  
variables becomes zero.

bi

Equivalently: In a basic feasible solution, one of the basic 
variables is 0.

Degenerate Pivot: The entering variable stays at 0 without 
increasing. 
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Degenerate dictionary: A dictionary in which one of the  
variables becomes zero.

bi

Equivalently: In a basic feasible solution, one of the basic 
variables is 0.

Degenerate Pivot: The entering variable stays at 0 without 
increasing. 



Degeneracy

Degenerate dictionary: A dictionary in which one of the  
variables becomes zero.

bi

Equivalently: In a basic feasible solution, one of the basic 
variables is 0.

Degenerate Pivot: The entering variable stays at 0 without 
increasing. 

“Degenerate pivots are quite common and usually 
harmless.”
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We don’t want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase
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We should not violate any constraints though!

We don’t want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase

Actually pivot!



Let’s not give up
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We can increase the value of some nonbasic variable, here x2

We should not violate any constraints though!

We don’t want any of the slack variables to become negative.

Increase the variable as much as we can (as before): here 0 increase

Actually pivot! (x1, x2, x3, w1, w2) = (0,0,1,0,0)
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The new dictionary
Maximise

subject to

ζ =

x3 =

x2 =

+1.5
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x1

x1

+2

−0.5

−

w2

w1

w2

x1, x2, x3, w1, w2 ≥ 0

3 +0.5 w1

x1 + w1

(x1, x2, x3, w1, w2) = (0,0,1,0,0)

entering variable

leaving variable

We can now increase  to x1 x1 = 2
The pivot is not degenerate!
It will actually lead to a final dictionary, and an optimal solution.
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Solution 1
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Solution 2

Dictionary 3 
Solution 3

non-degenerate pivot non-degenerate pivot

Dictionary 4 
Solution 3

degenerate pivot

Dictionary 5 
Solution 3

degenerate pivot

Dictionary 6 
Solution 4

non-degenerate pivot

Dictionary 7 
Solution 5 
(optimal)

non-degenerate pivot
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Could this happen though?

Dictionary 1 
Solution 1

Dictionary 2 
Solution 2

Dictionary 3 
Solution 3

non-degenerate pivot non-degenerate pivot

Dictionary 4 
Solution 3

degenerate pivot

Dictionary 5 
Solution 3

degenerate pivot

Dictionary 6 
Solution 4

degenerate pivot

degenerate pivot

If this happens, the algorithm would never terminate!
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Cycling

In theory: Cycling can happen. 

In practice: Cycling rarely happens.

But non-degenerate pivots are quite common.

Can we avoid cycling in theory too?

Bland’s rule: For both the entering variable and the leaving 
variable, choose the one with the smallest index. 
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Theorem: If the simplex method does not cycle, it 
terminates.


Proof: A dictionary is determined by which variables are 
basic and which are non-basic. 


There only  =  possibilities. (n + m
m ) (n + m)!

n!m!
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Simplex Running Time
First: Simplex is a method, not an algorithm, parameterised by the pivoting rule.

Bad news: None of the known pivoting rules are known to result in a 
polynomial-time algorithm.

More bad news: Most of the known pivoting rules have been shown to result in 
exponential running time.

Good news: In practice the algorithm is quite efficient/fast.

More good news: “Beyond the worst-case analysis” shows that the algorithm is 
also efficient in theory.

Even more good news: We have other algorithms that run in worst-case 
polynomial running time (Ellipsoid Method, Interior Point Methods). 


