
Algorithms and Data Structures
Minimum Spanning Trees - Greedy Algorithms Running Time

Minimum Spanning Tree

Consider a connected graph =(,), such that for every
edge = , of , there is an associated positive cost .

Goal: Find a subset of so that the graph =(,) is
connected and the total cost is minimised.

G V E
e {v w} E ce

T E G′ V T

∑
e∈T

ce

=(,) is a spanning tree and the problem is called 
the Minimum Spanning Tree problem.

G′ V T

Start with an empty set of edges .

Add one edge to .

Which one?

The one with the minimum cost .

We continue like this.

Do we always add the new edge to ?

Only if we don’t introduce any cycles.

T

T

ce

e T

Kruskal’s Algorithm

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

Start with an empty set of edges .

Start with a node .

Add an edge = , to .

Which one?

The one with the minimum cost .

We continue like this.

We only consider edges to neighbours that are not in the spanning tree.

T

s

e {s w} T

ce

Prim’s Algorithm

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14
0

1

7 6 5

2

8

3

4

Prim’s algorithm running time
We add nodes to the expanding spanning tree S.

We need to figure out which node to add next.

We need to know the attachment cost of each node: 
 

Naive solution: For every step run over all candidates.

a(v) = min
e={u,v}:u∈S

ce

Θ(n2)

Priority Queues

Priority queue: A data structure that maintains

A set of elements .

Each with an associated value, .

The values denote priorities.

For Min-Priority Queues, the elements with the smallest
values are those with the highest priority.

S

key(v)

Priority Queue Operations

 inserts a new item in the priority queue.

 finds the element with the maximum priority (the
smallest value) in the priority queue and returns it (but does
not remove it).

 finds the element with the maximum priority
(smallest value) in the priority queue, returns it, and deletes
it from the queue.

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

Priority Queue Operations

 inserts a new item in the priority queue.

 finds the element with the maximum priority (the
smallest value) in the priority queue and returns it (but does
not remove it).

 finds the element with the maximum priority
(smallest value) in the priority queue, returns it, and deletes
it from the queue.

 sets .

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

ChangeKey(Q, v, α) key(v) = α

Priority Queues
The Priority Queue is an abstract data type.

In reality, we have to implement it with known data
structures.

Many implementations exists, the usual one is with heaps.

We will not cover this here; it was covered in IADS last year. 
 
e.g. see KT Chapter 2.5, CLRS Chapter 6.5. (but you
would have to also read 6.1 - 6.3).

Priority Queue Operations

 inserts a new item in the priority queue.

 finds the element with the maximum priority (the
smallest value) in the priority queue and returns it (but does
not remove it).

 finds the element with the maximum priority
(smallest value) in the priority queue, returns it, and deletes
it from the queue.

 sets .

Insert(Q, v) v

FindMin(Q)

ExtractMin(Q)

ChangeKey(Q, v, α) key(v) = α

O(lg n)

O(1)

O(lg n)

O(lg n)

Prim’s algorithm running time
We add nodes to the expanding spanning tree S.

We need to figure out which node to add next.

We need to know the attachment cost of each node: 
 

PQ solution: Insert the nodes in a PQ, with the attachment cost as the key.

Run to find the next node.

 to update the attachment cost.

a(v) = min
e={u,v}:u∈S

ce

ExtractMin(Q)

ChangeKey(Q, v, α)

How many times? n − 1

How many times?
At most once per edge, thus ≤ m

Running time: O(m log n)

Start with an empty set of edges .

Add one edge to .

Which one?

The one with the minimum cost .

We continue like this.

Do we always add the new edge to ?

Only if we don’t introduce any cycles.

T

T

ce

e T

Kruskal’s Algorithm

What is the tricky part here?

Assume that we consider edge for possible
inclusion in our spanning tree.

If and are in different connected components, we are
good (why?)

Otherwise we should not add this edge (why?)

How can we find the connected component of ?

e = {v, w}

v w

v

Identifying connected
components

Graph Traversal (Search)

We would like to go over all the possible nodes of an
(undirected) graph.

There are different ways of doing that.

Two systematic ways:

Depth-First Search

Breadth-First Search

KT Chapter 3.2.

CLRS Chapter 20.2, 20.3

Run DFS/BFS from and see if is part of its connected
component.

Equivalently: see if the DFS/BFS from reaches .

Running time: DFS/BFS takes time , and we have
to do that for every edge .

We actually don’t have to compute the connected
component for every edge! We can compute all the
connected components in time.

v w

v w

Θ(m + n)
→ Ω(m2)

O(m + n)

Implementation idea

Finding all connected
components

C1 C2

C3

We actually don’t have to compute the connected
component for every edge! We can compute all the
connected components in time.

So, for a candidate edge we can check in
time whether the endpoints are in the same connected
component or not.

But on which graph?

O(m + n)

e = {w, v} O(1)

Implementation idea

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

We actually don’t have to compute the connected component for
every edge! We can compute all the connected components in

 time.

So, for a candidate edge we can check in time
whether the endpoints are in the same connected component or not.

But on which graph?

, where is the set of edges of the spanning tree that
we are developing.

This changes over time!

O(m + n)

e = {w, v} O(1)

G = (V, T) T

Implementation idea

How many times can it change? timesΩ(m)

Overall running time: Ω(m2)

An abstract data structure which maintains disjoint sets
(e.g., here connected components of a graph).

Its operations will allow us to find the set containing an
element , and to merge two sets into a single set 
(e.g., when we add edges so that now two nodes are part of
the same component, when they were not before).

u

The Union-Find Data Structure

Union-Find Operations

 creates a new Union-Find data structure
where every element in is a singleton set, i.e.,

 for

 returns the name of the set containing element .

 changes the Union-Find data structure by
merging the sets and into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

Example

0

1 2 3

4

567

8

4

8

11

8

2

6
7

1 2

7

9

4

10

14

MakeUnionFind(V) Union({6}, {7})
Union({6,7}, {5}) Union({2}, {8})

Kruskal’s algorithm
using Union-Find

We first sort the edges in terms of non-decreasing cost.

We run to initialise the components of
 to each contain one node.

When considering an edge , we check if
.

If yes, we ignore the edge and continue with the next one.

If no, we add the edge to the spanning tree and run
 to merge the two components.

MakeUnionFind(V)
G = (V, T)

e = {w, v}
Find(w) = Find(v)

Union(Find(u), Find(v))

Union-Find Operations

 creates a new Union-Find data structure
where every element in is a singleton set, i.e.,

 for

 returns the name of the set containing element .

 changes the Union-Find data structure by
merging the sets and into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))

Kruskal’s algorithm
using Union-Find

We first sort the edges in terms of non-decreasing cost.

We run to initialise the components of
 to each contain one node.

When considering an edge , we check if
.

If yes, we ignore the edge and continue with the next one.

If no, we add the edge to the spanning tree and run
 to merge the two components.

MakeUnionFind(V)
G = (V, T)

e = {w, v}
Find(w) = Find(v)

Union(Find(u), Find(v))

Kruskal’s algorithm
Running time

We first sort the edges in terms of non-decreasing cost.

 (why?)

We run to initialise the components of
to each contain one node.

When considering an edge , we check if .

If yes, we ignore the edge and continue with the next one.

If no, we add the edge to the spanning tree and run
 to merge the two components.

O(m log m) = O(m log n)

MakeUnionFind(V) G = (V, T)

e = {w, v} Find(w) = Find(v)

Union(Find(u), Find(v))

T (MakeUnionFind(v))

≤ 2m ⋅ T (Find(u))

≤ (n − 1) ⋅ T (Union(A, B)) ≤ m ⋅ T (Union(A, B))

Union-Find Operations

 creates a new Union-Find data structure
where every element in is a singleton set, i.e.,

 for

 returns the name of the set containing element .

 changes the Union-Find data structure by
merging the sets and into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))
Suffices to show , and are T (Find(u)) T (Union(A, B)) O(log n)

and is T (MakeUnionFind(v)) O(m log n)

An abstract data structure which maintains disjoint sets
(e.g., here connected components of a graph).

Its operations will allow us to find the set containing an
element , and to merge two sets into a single set 
(e.g., when we add edges so that now two nodes are part of
the same component, when they were not before).

We need to implement it using actual data structures.

u

The Union-Find Data Structure

Define an array of sets called Component, where is
the set containing element .  
The size of Component is .

: Setup Component and initialise
 for all .

Time:

: Simply return

Time:

Component[u]
u

n = |S |

MakeUnionFind(S)
Component[u] = u u ∈ S

O(n)

Find(u) Component[u]

O(1)

A First Attempt

Define an array of sets called Component, where
 is the set containing element .  

The size of Component is .

: Update to for every
element or .

Time:

Component[u] u
n = |S |

Union(A, B) Component[u] A ∪ B
u ∈ A u ∈ B

O(n)

A First Attempt

Suffices to show , and are T (Find(u)) T (Union(A, B)) O(log n)
and is T (MakeUnionFind(v)) O(m log n)

Optimisation #1: For each set, keep a list of elements it contains.

Update takes time rather than

Optimisation #2: Use the largest of and as the name for
 (keep the sizes in an array).

Update takes time assuming .

Still, worst case for is , when e.g.,  
 and .

O(|A | + |B |) O(n)

A B
A ∪ B size[⋅]

O(|B |) |A | ≥ |B |

Union(A, B) O(n)
|A | = Ω(n) |B | = Ω(n)

Let’s optimise a bit

Still, worst case for is , when e.g.,  
 and .

In a sequence of operations, how often does
this really happen?

Intuition: There can only be a few sets of very large size, so
all the other operations should be pretty cheap.

Union(A, B) O(n)
|A | = Ω(n) |B | = Ω(n)

k Union(A, B)

Union(A, B)

Let’s optimise a bit

Lemma: Any sequence of operations takes
 time.

Proof: Consider some element for which
gets updated throughout the sequence of operations.

After operations (…) elements still belong to their own
singleton sets.

k Union(A, B)
O(k log k)

v Component[v]
k

k

Lemma: Sequence of
 operationsUnion(A, B)

Lemma: Any sequence of operations takes
 time.

Proof: Consider some element for which
gets updated throughout the sequence of operations.

After operations at least elements still belong to
their own singleton sets.

What is the largest size that the set in which belongs can
have during the sequence?

k Union(A, B)
O(k log k)

v Component[v]
k

k n − 2k

v

Lemma: Sequence of
 operationsUnion(A, B)

What is the largest size that the set in which belongs can have
during the sequence?

The maximum size it can reach is , since at least
elements did not participate in the merge.

Every time is updated, the size of the set
containing at least doubles.

Note: It is important here to use our naming by the largest of
the two sets that are merged.

How many updates to ?

v

2k n − 2k

Component[v]
v

Component[v]

Lemma: Sequence of
 operationsUnion(A, B)

At most updates.log2(2k)

Lemma: Any sequence of operations takes
 time.

Proof: At most updates to .

At most elements participating in updates.

Time:

k Union(A, B)
O(k log k)

log2(2k) Component[v]

2k

O(k log k)

Lemma: Sequence of
 operationsUnion(A, B)

Union-Find Operations

 creates a new Union-Find data structure
where every element in is a singleton set, i.e.,

 for

 returns the name of the set containing element .

 changes the Union-Find data structure by
merging the sets and into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v))

T (Find(u))

T (Union(A, B))
Suffices to show , and are T (Find(u)) T (Union(A, B)) O(log n)

and is T (MakeUnionFind(v)) O(m log n)

Kruskal’s algorithm
Running time

We first sort the edges in terms of non-decreasing cost.

We run to initialise the components of
to each contain one node.

When considering an edge , we check if .

If yes, we ignore the edge and continue with the next one.

If no, we add the edge to the spanning tree and run
 to merge the two components.

O(m log m) = O(m log n)

MakeUnionFind(V) G = (V, T)

e = {w, v} Find(w) = Find(v)

Union(Find(u), Find(v))

T (MakeUnionFind(v))

≤ 2m ⋅ T (Find(u))

≤ (n − 1) ⋅ T (Union(A, B)) ≤ m ⋅ T (Union(A, B))T(m Union(A, B) operations) = O(m log m) = O(m log n)

Naming: Name a set by the name of one of its elements .

Pointers: Every element points to some element
(possibly the same).

S v

v u

A Better Implementation

w

u

s t

z

A Better Implementation

w

u

s t

z

: Every element points to itself.MakeUnionFind(S) v

 timeO(n)

B

: Redirect the pointer of the smallest set to the
largest set.
Union(A, B)

A Better Implementation

w

u

s t

z

A

y

x

How much time needed for ? Union(A, B) timeO(1)

B

: Follow the arrows to find the name of the set.Find(u)

A Better Implementation

w

u

s t

z

A

y

x

How many times does an arrow get redirected?

i.e., how many times does a set chance its name?

Every time the set containing changes name, it must be merged
with a larger set, so its size at least doubles (by our naming
convention).

Initially the set containing has size 1.

In the end it has size at most .

So, at most how many name changes?

u

u

n

Bounding the time of Find(u)

 changesO(log n)

Union-Find Operations
 creates a new Union-Find data structure

where every element in is a singleton set, i.e.,
 for

 returns the name of the set containing element .

 changes the Union-Find data structure by
merging the sets and into a single set.

MakeUnionFind(S)
S

{v1}, {v2,}, …{vk} S = {v1, v2, …, vk}

Find(u) u

Union(A, B)
A B

T (MakeUnionFind(v)) = O(n)

T (Find(u)) = O(log n)

T (Union(A, B)) = O(1)

Suffices to show , and are T (Find(u)) T (Union(A, B)) O(log n)
and is T (MakeUnionFind(v)) O(m log n)

An even better
implementation?

The pointer-based implementation can be made even better,
using a similar argument as before, bounding the running
time of a sequence of operations rather than a
single operation.

Details only if you are very interested: KT pp 197-199.

Find(u)

A Final Remark
In this course we have focused (and we will mostly focus) on
algorithms.

But sometimes the right use of data structure can make our
algorithm more efficient.

You can think of a data structure as a “part of the
algorithm”, which can be abstracted from the more high-
level ideas.

Data structures is a very big chapter in itself and an active
area of research.

