
Algorithms and Data Structures
Average Case Analysis

Recall: The Quicksort algorithm

Quicksort first divides the array into two parts, such that the
first part is “smaller” than the second part.

This is done via the Partition procedure.

Then it calls itself recursively.

The two parts are joined, but this is trivial.

The Partition procedure
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 8 7 1 3 5 4

The Quicksort algorithm
2 871 3 5 4

The Quicksort algorithm
2 871 3 5 4

The Quicksort algorithm
2 8 71 3 5 4

The Quicksort algorithm
2 8 71 3 5 4

The Quicksort algorithm
2 871 3 54

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

Running time of Quicksort
Quicksort: T(n) ≤ T(n1) + T(n2) + cn

Running time of Quicksort
Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When , we get and the running
time is .

This is the best-case running time.

n1 = n2 T(n) ≤ 2T(n) + cn
O(n log n)

Running time of Quicksort
Quicksort: T(n) ≤ T(n1) + T(n2) + cn

When , we get and the running
time is .

This is the best-case running time.

n1 = n2 T(n) ≤ 2T(n) + cn
O(n log n)

When , we get and
the running time is .

This is the worst-case running time.

n1 = n − 1 n2 = 0 T(n) ≤ T(n − 1) + cn
O(n2)

Running time of Quicksort

Quicksort:

What about the average-case running time?

T(n) ≤ T(n1) + T(n2) + cn

Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we
mean the worst-case running time, over all possible inputs to the
algorithm.

We can also measure the best-case running time, over all possible
inputs to the problem.

In between: average-case running time.

Running time of the algorithm on inputs which are chosen at
random from some distribution.

The appropriate distribution depends on the application (usually the
uniform distribution - all inputs equally likely).

Running time of Quicksort

Quicksort:

What about the average-case running time?

Assume that the input sequence of numbers is drawn
uniformly at random from a distribution over all possible
inputs.

T(n) ≤ T(n1) + T(n2) + cn

n
n!

Unbalanced Partitions

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

Assume that we use a pivot element that results in a 9-to-1
split, i.e., and .n1 = 9n/10 n2 = n/10

Unbalanced Partitions

Quicksort: T(n) ≤ T(n1) + T(n2) + cn

Assume that we use a pivot element that results in a 9-to-1
split, i.e., and .n1 = 9n/10 n2 = n/10

Q: Can you work out what the recurrence relation evaluates
to? Use the unrolling technique.

Unbalanced Partitions

Quicksort:

Assume that we use a pivot element that results in a 99-to-1
split, i.e., and .

Q: Can you work out what the recurrence relation evaluates
to? Use the unrolling technique.

T(n) ≤ T(n1) + T(n2) + cn

n1 = 99n/100 n2 = n/100

Unbalanced Partitions

Quicksort:

Assume that we use a pivot element that results in a 99-to-1
split, i.e., and .

Q: Can you work out what the recurrence relation evaluates
to? Use the unrolling technique.

T(n) ≤ T(n1) + T(n2) + cn

n1 = 99n/100 n2 = n/100

Main message: Bad partitions are rather unlikely to happen.
Most partitions are good partitions.

For the sake of intuition
Consider the recursion tree of Quicksort.

First iteration

cn

T(n1) T(n2)

Second iteration

cn

c(n1) c(n2)

T(n′ 1) T(n′ 2) T(n′ ′ 1) T(n′ ′ 2)

For the sake of intuition
Consider the recursion tree of Quicksort.

First iteration

cn

T(n1) T(n2)

Second iteration

cn

c(n1) c(n2)

T(n′ 1) T(n′ 2) T(n′ ′ 1) T(n′ ′ 2)

Assume bad and good levels alternate.

For the sake of intuition
Consider the recursion tree of Quicksort.

First iteration

cn

T(n1) T(n2)

Second iteration

cn

c(n1) c(n2)

T(n′ 1) T(n′ 2) T(n′ ′ 1) T(n′ ′ 2)

Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

For the sake of intuition
Consider the recursion tree of Quicksort.

First iteration

cn

T(n1) T(n2)

Second iteration

cn

c(n1) c(n2)

T(n′ 1) T(n′ 2) T(n′ ′ 1) T(n′ ′ 2)

Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

For the sake of intuition
Consider the recursion tree of Quicksort.
Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

Recurrence:
T(n) ≤ T(n − 1) + cn ≤ 2T(n − 1/2) + c(2n − 1)

For the sake of intuition
Consider the recursion tree of Quicksort.
Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

Recurrence:
T(n) ≤ T(n − 1) + cn ≤ 2T(n − 1/2) + c(2n − 1)

Almost the same as:

T(n) ≤ 2T(n /2) + cn

For the sake of intuition
Consider the recursion tree of Quicksort.
Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

Recurrence:
T(n) ≤ T(n − 1) + cn ≤ 2T(n − 1/2) + c(2n − 1)

Almost the same as:

T(n) ≤ 2T(n /2) + cn

The cost of the unbalanced partition 
is “absorbed” in the cost of the 
balanced partition.

For the sake of intuition
Consider the recursion tree of Quicksort.
Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

Recurrence:
T(n) ≤ T(n − 1) + cn ≤ 2T(n − 1/2) + c(2n − 1)

Almost the same as:

T(n) ≤ 2T(n /2) + cn

The cost of the unbalanced partition 
is “absorbed” in the cost of the 
balanced partition.

We only pay extra in constants.

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition?

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort?

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop?

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

Let be the number of comparisons 
in the th execution of the loop. Let

Xk
k X = ∑

k

Xk

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

Let be the number of comparisons 
in the th execution of the loop. Let

Xk
k X = ∑

k

Xk

How many operations in each  
execution of the loop?

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

Let be the number of comparisons 
in the th execution of the loop. Let

Xk
k X = ∑

k

Xk

How many operations in each  
execution of the loop? O(Xk)

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

Let be the number of comparisons 
in the th execution of the loop. Let

Xk
k X = ∑

k

Xk

How many operations in each  
execution of the loop? O(Xk)

How many operations in total?

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

How many calls to Partition? at most n
How many calls to Quicksort? at most 2n
How many operations, excluding 

those in the for loop? O(n)

Let be the number of comparisons 
in the th execution of the loop. Let

Xk
k X = ∑

k

Xk

How many operations in each  
execution of the loop? O(Xk)

How many operations in total? O(n + X)

Running time of Quicksort

Running time of Quicksort

The running time of the algorithm is where is
the total number of comparisons.

O(n + X) X

Running time of Quicksort

The running time of the algorithm is where is
the total number of comparisons.

O(n + X) X

When assuming that the input is drawn from a distribution,
 is a random variable. X

Running time of Quicksort

The running time of the algorithm is where is
the total number of comparisons.

O(n + X) X

When assuming that the input is drawn from a distribution,
 is a random variable. X

We need to compute its expectation .𝔼[X]

Notation

Notation

Let be the elements of the input array after
they have been sorted.

z1, z2, …, zn A

Notation

Let be the elements of the input array after
they have been sorted.

z1, z2, …, zn A

This is for ease of reference: we might start with something
like z3 z5 z1 z8 … z2

Notation

Let be the elements of the input array after
they have been sorted.

z1, z2, …, zn A

This is for ease of reference: we might start with something
like z3 z5 z1 z8 … z2

Let contain the elements of a
subsequence of the sorted array.

Zij = {zi, zi+1, …, zj}

Useful Lemma

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:⇒

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:⇒If none of and is chosen as the pivot before any other 
element , then they are not compared with each other.

zi zj
z ∈ Zij

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:⇒If none of and is chosen as the pivot before any other 
element , then they are not compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:⇒If none of and is chosen as the pivot before any other 
element , then they are not compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}
first pivot element from Z

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

zi
zj i < j

Zij

Proof:⇒If none of and is chosen as the pivot before any other 
element , then they are not compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}
first pivot element from Z

zi−11 zj+8 zj−5zi zi+2 zjzk

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒ If one of and is chosen as the pivot before any other 
element , then they are compared with each other.

zi zj
z ∈ Zij

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒ If one of and is chosen as the pivot before any other 
element , then they are compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒ If one of and is chosen as the pivot before any other 
element , then they are compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}
first pivot element from Z

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒ If one of and is chosen as the pivot before any other 
element , then they are compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}
first pivot element from Z

 will be compared with every element zi z ∈ Z

Useful Lemma
Lemma: During the execution of the algorithm, an element is
compared with an element , where iff one of them is chosen as
the pivot before any other element in the set . Moreover, no two
elements are ever compared more than once.

Proof:

zi
zj i < j

Zij

⇒ If one of and is chosen as the pivot before any other 
element , then they are compared with each other.

zi zj
z ∈ Zij

Zij = {zi, zi+1, …, zk, …, zj−1, zj}
first pivot element from Z

 will be compared with every element zj z ∈ Z

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

all elements of togetherZij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

all elements of togetherZij

all elements of togetherZij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

⋮

all elements of togetherZij

all elements of togetherZij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

⋮

all elements of togetherZij

all elements of togetherZij

some is chosen as the pivotz ∈ Zij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

⋮

all elements of togetherZij

all elements of togetherZij

some is chosen as the pivotz ∈ Zij
at this point every is equally likely to be chosenz ∈ Zij

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

QS(n)

QS(n1) QS(n2)

QS(n′ 1) QS(n′ 2) QS(n′ ′ 1) QS(n′ ′ 2)

⋮

all elements of togetherZij

⋮

all elements of togetherZij

all elements of togetherZij

some is chosen as the pivotz ∈ Zij
at this point every is equally likely to be chosenz ∈ Zij

Pr[z is chosen] = 1/(j − i + 1)

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] =

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] = Pr[zi or zj is the first pivot chosen from Zij]

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] = Pr[zi or zj is the first pivot chosen from Zij]

= Pr[zi is the first pivot chosen from Zij] +

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] = Pr[zi or zj is the first pivot chosen from Zij]

= Pr[zi is the first pivot chosen from Zij] +

Pr[zj is the first pivot chosen from Zij]

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] = Pr[zi or zj is the first pivot chosen from Zij]

= Pr[zi is the first pivot chosen from Zij] +

Pr[zj is the first pivot chosen from Zij]{the two events 
are independent

Probability of comparison

Lemma: Given two arbitrary elements , where ,
the probability that they are compared is

Proof:

zi, zj ∈ Zij i < j
2/(j − i + 1)

Pr[z is chosen] = 1/(j − i + 1)

by the Useful Lemma, we have:

Pr[zi is compared with zj] = Pr[zi or zj is the first pivot chosen from Zij]

= Pr[zi is the first pivot chosen from Zij] +

Pr[zj is the first pivot chosen from Zij]{the two events 
are independent

=
2

j − i + 1

Average-case running
time of Quicksort

Average-case running
time of Quicksort

Indicator Random Variable: , for
.

Xij = 𝕀{zi is compared with zj}
1 ≤ i < j ≤ n

Average-case running
time of Quicksort

Indicator Random Variable: , for
.

Xij = 𝕀{zi is compared with zj}
1 ≤ i < j ≤ n

By Useful Lemma, each pair is compared at most once, hence
we have:

Average-case running
time of Quicksort

Indicator Random Variable: , for
.

Xij = 𝕀{zi is compared with zj}
1 ≤ i < j ≤ n

By Useful Lemma, each pair is compared at most once, hence
we have:

 and X =
n−1

∑
i=1

n

∑
j=i+1

Xij 𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij]

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij] by linearity of expectation

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij] by linearity of expectation

=
n−1

∑
i=1

n

∑
j=i+1

Pr[zi is compared with zj]

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij] by linearity of expectation

=
n−1

∑
i=1

n

∑
j=i+1

Pr[zi is compared with zj]
𝔼[Xj] = Pr[Xj = 1] ⋅ 1 + Pr[Xj = 0] ⋅ 0 = Pr[Xj = 1]

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij] by linearity of expectation

=
n−1

∑
i=1

n

∑
j=i+1

Pr[zi is compared with zj]
𝔼[Xj] = Pr[Xj = 1] ⋅ 1 + Pr[Xj = 0] ⋅ 0 = Pr[Xj = 1]

=
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

Average-case running
time of Quicksort

𝔼[X] = 𝔼
n−1

∑
i=1

n

∑
j=i+1

Xij

=
n−1

∑
i=1

n

∑
j=i+1

𝔼 [Xij] by linearity of expectation

=
n−1

∑
i=1

n

∑
j=i+1

Pr[zi is compared with zj]
𝔼[Xj] = Pr[Xj = 1] ⋅ 1 + Pr[Xj = 0] ⋅ 0 = Pr[Xj = 1]

=
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

by probability lemma

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1 by change of variables

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1 by change of variables

≤
n−1

∑
i=1

n

∑
k=1

2
k

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1 by change of variables

≤
n−1

∑
i=1

n

∑
k=1

2
k

≤ 2nHk

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1 by change of variables

≤
n−1

∑
i=1

n

∑
k=1

2
k

≤ 2nHk 1 + 1/2 + … + 1/k

Average-case running
time of Quicksort

𝔼[X] =
n−1

∑
i=1

n

∑
j=i+1

2
j − i + 1

=
n−1

∑
i=1

n−i

∑
k=1

2
k + 1 by change of variables

≤
n−1

∑
i=1

n

∑
k=1

2
k

≤ 2nHk

= O(n log n)

1 + 1/2 + … + 1/k

The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
 Choose a pivot element x of A 
 
 k = i 
 
 For h = i to j do 
 
 If A[h] < x 
  
 Swap A[k] with A[h]  
 k = k + 1  
 
 Swap A[k] with A[h]

Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
 y = Partition(A[i,…,j]) 
 Quicksort(A[i,…,y-1]) 
 Quicksort(A[y+1,…,j])

Q: Can you think of a version of the algorithm that will have worst-case running time ?O(n log n)

Lower bound for sorting

Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a2 < a3 ? Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

a3 a2 a1 a2 a3 a1

No

Lower bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

The decision tree has leaves

A leaf is a permutation of {a1, a2, … , an}

Every possible permutation can appear as a leaf, since
every possible permutation is a valid output.

n!

Lower bound for sorting

Fact: Every binary tree of depth has at most leaves.

Therefore the minimum number of comparisons is

We claim that

d 2d

log2(n!)

log2(n!) = Ω(n log n)

 log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)
 = log2(1) + log2(2) +…+ log2(n)
 (half)≥ log2(n/2) +…+ log2(n)
 = ≥ log2(n/2) +…+ log2(n/2) (n/2) log2(n/2)

Worst-case lower
bound for sorting

We need as many comparisons as the depth of the tree
(length of the longest path from the root to the leaves).

The decision tree has leaves

A leaf is a permutation of {a1, a2, … , an}

Every possible permutation can appear as a leaf, since
every possible permutation is a valid output.

n!

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Average depth
Is a1 < a2 ?

Is a1 < a3 ? Is a2 < a3 ?

a2 a1 a3

Is a2 < a3 ? Is a1 < a3 ? a1 a2 a3

a3 a1 a2 a1 a3 a2

No Yes

a3 a2 a1 a2 a3 a1

No

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Among all decision trees with a fixed number of leaves,
which one has the smallest average depth?

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Among all decision trees with a fixed number of leaves,
which one has the smallest average depth?

A completely balanced tree!

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Among all decision trees with a fixed number of leaves,
which one has the smallest average depth?

A completely balanced tree!

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

Among all decision trees with a fixed number of leaves,
which one has the smallest average depth?

A completely balanced tree!

Average-case lower
bound for sorting

We need as many comparisons as the average depth of the
tree (average length of the longest path from the root to a
the leaves).

The depth of a balanced tree is and the analysis
goes through as before.

Θ(log2 n!)

