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Recall: The Quicksort algorithm

Quicksort first divides the array into two parts, such that the 
first part is “smaller” than the second part.


This is done via the Partition procedure.


Then it calls itself recursively.


The two parts are joined, but this is trivial.



The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i 
 
    For h = i to j do 
 
          If A[h] < x 
                 
                Swap A[k] with A[h]  
                k = k + 1  
 
         Swap A[k] with A[h]


Return k 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)
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Algorithm Quicksort(A[i,…,j]) 
 
            y = Partition(A[i,…,j]) 
                  Quicksort(A[i,…,y-1]) 
                  Quicksort(A[y+1,…,j])
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Running time of Quicksort
Quicksort:       T(n) ≤ T(n1) + T(n2) + cn

When    , we get      and the running 
time is .


This is the best-case running time.

n1 = n2 T(n) ≤ 2T(n) + cn
O(n log n)

When      , we get      and 
the running time is .


This is the worst-case running time.

n1 = n − 1 n2 = 0 T(n) ≤ T(n − 1) + cn
O(n2)



Running time of Quicksort

Quicksort:        

What about the average-case running time?

T(n) ≤ T(n1) + T(n2) + cn



Worst vs Best vs Average Case

Convention: When we say “the running time of Algorithm A”, we 
mean the worst-case running time, over all possible inputs to the 
algorithm.


We can also measure the best-case running time, over all possible 
inputs to the problem.


In between: average-case running time. 


Running time of the algorithm on inputs which are chosen at 
random from some distribution.


The appropriate distribution depends on the application (usually the 
uniform distribution - all inputs equally likely).



Running time of Quicksort

Quicksort:        

What about the average-case running time?


Assume that the input sequence of  numbers is drawn 
uniformly at random from a distribution over all  possible 
inputs. 

T(n) ≤ T(n1) + T(n2) + cn

n
n!
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Unbalanced Partitions

Quicksort:        

Assume that we use a pivot element that results in a 99-to-1 
split, i.e.,  and .


Q: Can you work out what the recurrence relation evaluates 
to? Use the unrolling technique. 

T(n) ≤ T(n1) + T(n2) + cn

n1 = 99n/100 n2 = n/100

Main message: Bad partitions are rather unlikely to happen. 
Most partitions are good partitions. 
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For the sake of intuition
Consider the recursion tree of Quicksort.
Assume bad and good levels alternate.

First iteration

cn

T(n − 1) T(0)

Second iteration

cn

c(n − 1) 0

T((n − 1)/2) T((n − 1)/2)

Recurrence:
T(n) ≤ T(n − 1) + cn ≤ 2T(n − 1/2) + c(2n − 1)

Almost the same as:

T(n) ≤ 2T(n /2) + cn

The cost of the unbalanced partition 
is “absorbed” in the cost of the 
balanced partition.

We only pay extra in constants.
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Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i 
 
    For h = i to j do 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Running time of Quicksort

The running time of the algorithm is  where  is 
the total number of comparisons. 

O(n + X) X

When assuming that the input is drawn from a distribution, 
 is a random variable. X

We need to compute its expectation .𝔼[X]



Notation



Notation

Let  be the elements of the input array  after 
they have been sorted. 

z1, z2, …, zn A



Notation

Let  be the elements of the input array  after 
they have been sorted. 

z1, z2, …, zn A

This is for ease of reference: we might start with something 
like z3 z5 z1 z8 … z2



Notation

Let  be the elements of the input array  after 
they have been sorted. 

z1, z2, …, zn A

This is for ease of reference: we might start with something 
like z3 z5 z1 z8 … z2

Let  contain the elements of a 
subsequence of the sorted array. 

Zij = {zi, zi+1, …, zj}
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The Quicksort algorithm
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i 
 
    For h = i to j do 
 
          If A[h] < x 
                 
                Swap A[k] with A[h]  
                k = k + 1  
 
         Swap A[k] with A[h]


Return k 
 

Algorithm Quicksort(A[i,…,j]) 
 
            y = Partition(A[i,…,j]) 
                  Quicksort(A[i,…,y-1]) 
                  Quicksort(A[y+1,…,j])

Q: Can you think of a version of the algorithm that will have worst-case running time ?O(n log n)
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Lower bound for sorting

We need as many comparisons as the depth of the tree 
(length of the longest path from the root to the leaves).


The decision tree has  leaves


A leaf is a permutation of {a1, a2, … , an}


Every possible permutation can appear as a leaf, since 
every possible permutation is a valid output.

n!



Lower bound for sorting

Fact: Every binary tree of depth  has at most  leaves.


Therefore the minimum number of comparisons is 


We claim that   

d 2d

log2(n!)

log2(n!) = Ω(n log n)

   log2(n!) = log2 (1 ⋅ 2 ⋅ , …, ⋅ n)
      = log2(1) + log2(2) +…+ log2(n)
    (half)≥ log2(n/2) +…+ log2(n)
    =  ≥ log2(n/2) +…+ log2(n/2) (n/2) log2(n/2)



Worst-case lower  
bound for sorting

We need as many comparisons as the depth of the tree 
(length of the longest path from the root to the leaves).


The decision tree has  leaves


A leaf is a permutation of {a1, a2, … , an}


Every possible permutation can appear as a leaf, since 
every possible permutation is a valid output.

n!



Average-case lower  
bound for sorting

We need as many comparisons as the average depth of the 
tree (average length of the longest path from the root to a 
the leaves).
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Average-case lower  
bound for sorting

We need as many comparisons as the average depth of the 
tree (average length of the longest path from the root to a 
the leaves).

The depth of a balanced tree is  and the analysis 
goes through as before.

Θ(log2 n!)


