Algorithms and Data Structures

Max Flow in Polynomial Time: The Edmonds-Karp Algorithm
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Running Time

The running time of FF is O(mF), where F is the value of the
maximum flow.

Since F < ¢, this is in fact O(mc¢).
Is this an efficient algorithm?

The running time is pseudopolynomial, as it runs in time polynomial
In 7 and the unary representation of the total capacity ¢.

It is fairly efficient, if in the numbers involved in the input are
reasonably small.



The Ford-Fulkerson Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose such a path P
f’ = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return ( f)
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Max-Flow In polynomial time

We made the algorithm must faster by simply selecting the
shortest path with available capacity.

Can we always hope to do that?
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The Edmonds-Karp Algorithm

Max-Flow

Initially set f(e) = 0 for all e in E.
While there exists an s-t path in the residual graph Gf

Choose the shortest such path P
f’ = augment(f, P)

Update f to be f’
Update the residual graph to be Gf’

Endwhile

Return ( f)
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By the choice of v, we know that dy(s, u) > d(s, u) (why?)
Suppose (1, v) € £, then:
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Edmonds-Karp Running Time

Terminology: We will call an edge e critical, if ¢, = hottleneck(P, f).

What is the effect that augmenting the flow to f on P has on ¢ in the
residual graph Gf?

It disappears from Gf.

How many critical edges are there at least in P?

At least 1.

How many times can an edge ¢ become critical during the execution of
the algorithm?
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Let f be the flow when this occurs,
and G]; be the corresponding residual

graph.
We have d]?(S, u) = d]?(S, v)+ 1

By the lemma, we have

de(s,v) < di(s, v)

(recall: f was the flow when (1, V)
became critical).

Hence,
df(s, u) > df(s, v)+ 1 = df(s, u) + 2
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low many flow augmentations?

O(mn).

low much time for each flow augmentation?
O(m+ n) = O(m).
Total running time?

O(nm?).



