
Algorithms and Data Structures
Max Flow in Polynomial Time: The Edmonds-Karp Algorithm
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Feasibility 


Does the algorithm produce a flow if it terminates?


Termination 

Does the algorithm always terminate?


Running Time 

What is the running time of the algorithm?


Optimality / Correctness 

Does the algorithm produce a maximum flow?
?



Running Time
The running time of FF is mF , where F is the value of the 
maximum flow.


Since F  C, this is in fact mC .


Is this an efficient algorithm? 


The running time is pseudopolynomial, as it runs in time polynomial 
in  and the unary representation of the total capacity C.


It is fairly efficient, if in the numbers involved in the input are 
reasonably small.

O( )

≤ O( )

n



The Ford-Fulkerson Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose such a path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )
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Max-Flow in polynomial time

We made the algorithm must faster by simply selecting the 
shortest path with available capacity.


Can we always hope to do that?



The Ford-Fulkerson Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose such a path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )


 



The Edmonds-Karp Algorithm
Max-Flow 

      Initially set f(e) = 0 for all e in E. 
       
      While there exists an s-t path in the residual graph Gf 
           
          Choose the shortest such path P 
          f’ = augment(f, P) 
          Update f to be f’ 
          Update the residual graph to be Gf’ 
       
      Endwhile 
 
      Return ( f )


 



Useful Lemma
Lemma: Suppose that we run the Edmonds-Karp algorithm on a flow network 

. For every node , the length of the shortest path  
from  to  in the residual graph  given by  increases with each flow augmentation. 
G = (V, E) u ∈ V∖{s, t} df(s, u)

s u Gf f
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Terminology: We will call an edge  critical, if bottleneck  .e ce = (P, f)

What is the effect that augmenting the flow to  on  has on  in the 
residual graph  ?

f P e
Gf

It disappears from  .Gf

How many critical edges are there at least in ?P

At least 1. 

How many times can an edge  become critical during the execution of 
the algorithm?

e
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(recall:  was the flow when  
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How many flow augmentations?

.O(mn)

How much time for each flow augmentation?

.O(m + n) = O(m)

Total running time?

.O(nm2)


