Algorithms and Data Structures

Fast Fourier Transform

Multiplying two polynomials

Multiplying two polynomials

Suppose that we have two polynomials of degree n

Multiplying two polynomials

Suppose that we have two polynomials of degree n

AX)=ay+ax+ax*+...,+a,_x""!

Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!

B(x) =by+bx+byx*+...,+b,_x""}

Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) =by+bx+byx*+...,+b,_x""}

The product is a polynomial C(x) of degree 2n — 2 where
the coefficient of the term x" is

Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) =by+bx+byx*+...,+b,_x""}

The product is a polynomial C(x) of degree 2n — 2 where
the coefficient of the term x" is

Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!

B(x) = by+ bx+bx*+ ...,+b,_x""}

Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) = by+ bx+bx*+ ...,+b,_x""}

Coefficient of x” = 1 is ayb,

Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x)=by+bx+byx*+ ...,+ b, x"!

Coefficient of x” = 1 is anby

Coefficient of x! = xis agb, + a,b,

Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) = by+ bx+bx*+ ...,+b,_x""}
Coefficient of x” = 1 is ayb,
Coefficient of x! = x is ayb, + a,b,

Coefficient of x* is ayb, + a,b; + a,b,

Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX) =ag+ax +ax*+ ..., +a, x""!
B(x) =by+ bx+bx*+ ...,+b,_x""1

The product is a polynomial C(x) of degree 2n — 2 where the coefficient of
the term x* is

Cp = Z ab;
(ir)):i+j=k

Equivalently: the coefficient vector ¢ of C(x) is the convolution a * b of the
coefficient vectors of A(x) and B(x).

How to compute C(x)?

How to compute C(x)?

Naive approach: Compute all the partial products (for every
pair (i, 7)) and add them up.

How to compute C(x)?

Naive approach: Compute all the partial products (for every
pair (i, 7)) and add them up.

What is the running time in this case?

How to compute C(x)?

Naive approach: Compute all the partial products (for every
pair (i, 7)) and add them up.

What is the running time in this case?

O(n?)

How to compute C(x)?

Naive approach: Compute all the partial products (for every
pair (i, 7)) and add them up.

What is the running time in this case?
O(n?)

We will attempt to design a faster algorithm using Divide &
Conquer.

How to compute C(x)?

Naive approach: Compute all the partial products (for every
pair (i, 7)) and add them up.

What is the running time in this case?
O(n?)

We will attempt to design a faster algorithm using Divide &
Conquer.

Fast Fourier Transform (FFT)

Key idea: How to represent
polynomials

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors

a=(ayay,...,a, 1), b=(by,by,....,b, 1)

A different representation

A different representation

Consider the polynomial
Ax) =ag+ax

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

Polynomial interpolation

Polynomial interpolation

Consider the polynomial

A(X) = ag + a;x + a,x* + ..., a;x?

Polynomial interpolation

Consider the polynomial
A(X) = ag + a;x + a,x* + ..., a;x?

Fact: Any polynomial of degree d
can be represented by its values

on at least d + 1 points.

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors

a=(ayay,...,a, 1), b=(by,by,....,b, 1)

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors

a=(ayay,...,a, 1), b=(by,by,....,b, 1)

Representation 2: via their values on at least n points

New strategy

New strategy

Step 1: Choose 2n values x;, x,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

New strategy

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x)) - B(x;) forall j
(these are now just numbers).

New strategy

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x)) - B(x;) forall j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x)) - B(x;) forall j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

A different representation

Consider the polynomial
Ax) =ag+ax

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values x; and X,.

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

We will choose the 21 values carefully!

Quick Detour: Complex Numbers C

imaginary part
Complex numberz = a + bi i*=-1

——

| real part
m 4

:z=a+bi

Quick Detour: Complex Numbers C

imaginary part

Complex numberz = a + bi i*=-1
S
real part

Im 4

:z=a+bi

>

Re

a

Argument ¢ : the angle of the radius with the positive real axis

Quick Detour: Complex Numbers C

imaginary part

Complex numberz = a + bi i*=-1
S
real part

Im 4

.:Z=a+M

>

Re

Argument ¢ : the angle of the radius with the positive real axis

Magnitude r: r = | 7| =\/Cl2+b2

Quick Detour: Complex Numbers C

imaginary part

Complex numberz = a + bi i*=-1
N——’
Im 4 real part Polar Coordinates
z=r(cos¢ +ising)

:z=a+bi

>

Re

Argument ¢ : the angle of the radius with the positive real axis

Magnitude r: r = | 7| =\/Cl2+b2

Quick Detour: Complex Numbers C

imaginary part

Complex numberz = a + bi i*=-1
N——’
Im 4 real part Polar Coordinates
z=r(cos¢ +ising)

:z=a+bi

Euler’s formula: e = cosx +isin x

Z=I"°€i¢

>

Re

Argument ¢ : the angle of the radius with the positive real axis

Magnitude r: r = | 7| =\/Cl2+b2

Roots of Unity

Roots of Unity

Let 7 be a positive integer. An nth root of unity is a (complex)
number x satisfying the equation x" = 1.

Roots of Unity

Let 7 be a positive integer. An nth root of unity is a (complex)
number x satisfying the equation x” = 1.

The nth roots of unity are:

2k 2knm
COS isin—, fork=0,1,....n—1
n n

Roots of Unity

Let 7 be a positive integer. An nth root of unity is a (complex)
number x satisfying the equation x” = 1.

The nth roots of unity are:

2k 2knm
COS isin—, fork=0,1,....n—1
n n

ki

Equivalently: e =, fork =0,1,....,n— 1

Roots of Unity

Let 7 be a positive integer. An nth root of unity is a (complex)
number x satisfying the equation x” = 1.

The nth roots of unity are:

2k 2knm
COS isin—, fork=0,1,....n—1
n n

ki

Equivalently: e =, fork =0,1,....,n— 1

27l

The quantity e = cos(2x/n) + i sin(2x/n) is called the
principal nth root of unity.

Roots of Unity

The quantity e = cos(2xn/n) + i sm(2x/n) is called the
principal nth root of unity.

Roots of Unity

The quantity e = cos(2xn/n) + i sm(2x/n) is called the
principal nth root of unity.

27l

Let w,, = cos(2x/n) + isin(2xn/n) = e

Roots of Unity

27l

The quantity e» = cos(2xn/n) + i sin(2x/n) is called the
principal nth root of unity.

27l

Let w,, = cos(2x/n) + isin(2xn/n) = e

The nth roots of unity can then be written as:

2 3 n—1
lw,w,, ©,... o,

_ 2nki 2mi k k
sSIncee » = | er ==

Roots of Unity

27l

The quantity e» = cos(2xn/n) + i sin(2x/n) is called the
principal nth root of unity.

27l

Let w,, = cos(2x/n) + isin(2xn/n) = e

The nth roots of unity can then be written as:

2 3 n—1
lw,w,, ©,... o,

_ 2nki 2mi k k
sSIncee » = | er ==

Properties of the Roots of Unity

Properties of the Roots of Unity

Cancellation: Let n > 0,k > 0,d > 0. It holds that 09" = w)

n

Properties of the Roots of Unity

n

Cancellation: Let n > 0,k > 0,d > 0. It holds that 09" = w)

\ dk . .
. dk __ 2mi . 2ridk _ 2mik _ k
Proof.a)dn—<edn) =ed =en =@,

Properties of the Roots of Unity

Cancellation: Let n > 0,k > 0.d > 0. It holds that a)d — a)k

~\ dk | |
27l 2ridk 2mik
Proof: a)jrll‘ <eﬁ) — ¢ & = e n = a)k

n

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

Properties of the Roots of Unity

Cancellation: Let n > 0,k > 0.d > 0. It holds that a)d — a)k

\ dk . .
dk 2ni . 2nidk _ 27:1{ _ k
Proof: @, = <edn) =ed =en =@,

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

2
ik 2k — .k
Proof: (a)n) =, /s also

k+n/2\ 2 Dk+n ok oon _ -k
(a)n) = ;""" =w" 0 =w,,

Properties of the Roots of Unity

Proof: a)jk =

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

2
Ak = 2k — K
Proof: (a)n) =, = m,,, also

k+n/2\2 _ 2k+n _ 2k ..on _ .k
(%)—% = w;" -, = w0,

Properties of the Roots of Unity

Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It

n—1 .
holds that 2 (a),f)] =0
j=0

Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It
n—1

holds that)~ (w}) =
j=0
o () =1 (@) -1 1k
Proof Z (k) = e E b = ()

Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It

n—1 .
holds that) (wf)' =
j=0
SV) Ml S 1 M R L
Proof:Z(a),’j)]— T T T =a)k—1=0
=0 n n n

sum of geometric series

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

We will choose the 21 values carefully!

Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

We will choose the 2nth (complex) roots of unity.

Discrete Fourier Transform

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a sequence of m

complex numbers p,, py, ..., p,,_ is defined to be the
sequence of complex numbers

P(1),P(w,), P(w?), ..., P(@™ 1)

obtained by evaluating the polynomial

P(x) = py + pix +p2x2 -+ ...,p,/n_l)c’/’”‘_1

on each of the mth roots of unity.

Divide and Conquer

Divide and Conquer

Assume that m = 27 for some positive integer Z.

Divide and Conquer

Assume that m = 27 for some positive integer Z.

Let

2 [2—1
Poyen(¥) = py+ ppx + pyx=+ ... + p,,_x"
Podd(x) = p1 T D3X +pr2 + ... +p,,,,l_1xm/2_1

Divide and Conquer

Assume that m = 27 for some positive integer 2.

Let

2 2—1
Peven®) = py+ pox + pux* + ... + p,,_x™
Pogq®) = p; + px + psx* + ... +p,_x™>"1

Observe that: P(x) = Pgyen(x?) + X+ Pogq(x?)

Divide and Conquer

Assume that m = 27 for some positive integer 2.

Let

2 2—1
Peven®) = py+ pox + pux* + ... + p,,_x™
Pogq®) = p; + px + psx* + ... +p,_x™>"1

Observe that: P(x) = Pgyen(x?) + X+ Pogq(x?)

So to evaluate P(x) at 1,w,, w>, ..., 0", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12, (@,)% @2)% ... (@)
2. Combine the results to obtain P(x)

Divide and Conquer

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12, (@,)% @2)% ... (™)

2. Combine the results to obtain P(x)

Divide and Conquer

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12, (a)m)z, (a)nzi)z, o (a)nn:_l)z We successfully halved the degree

2. Combine the results to obtain P(x)

Divide and Conquer

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
2 2 2\2 —1\?2 We successfully halved the degree
12, (0% (@22, ..., (@l

m It seems we are still evaluating on m — 1 points

2. Combine the results to obtain P(x)

Properties of the Roots of Unity

Proof: a)jk =

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

2
Ak = 2k — K
Proof: (a)n) =, = m,,, also

k+n/2\2 _ 2k+n _ 2k ..on _ .k
(%)—% = w;" -, = w0,

Divide and Conquer

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12 (C())2 (0)2)2 (a)m_l)z We successfully halved the degree
” m’ ° m’/ % °°° m

It seems we are still evaluating on m points

2. Combine the results to obtain P(x)

Divide and Conquer

So to evaluate P(x) at 1,w,, a)2 . a),f,’,f_l we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12 (a))2 (0)2)2 (m— 1)2) We successfully halved the degree

It seems we are still evaluating on m points

" 2. Combine th esults to obtain P(x)

This is a list of the m/2 (m/2)th roots of unity, each appearing twice

Divide and Conquer

So to evaluate P(x) at 1,w,, a)2 . a),f,’,f_l we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12 (a))2 (0)2)2 (m— 1)2) We successfully halved the degree

It seems we are still evaluating on m points

" 2. Combine th esults to obtain P(x)

This is a list of the m/2 (m/2)th roots of unity, each appearing twice

So we only need to evaluate at m/2 points

Divide and Conquer

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12, (@,)% @2)% ... (™)

2. Combine the results to obtain P(x)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(1) + 1 - Poqq(1)

So to evaluate P(x) at 1,w,, a)nz/l, e a)n”,f_l, we can
1. Evaluate the two polynomials of degree m/2 — 1 at
12, (@,)% @2)% ... (™)

2. Combine the results to obtain P(x)

P(1) = Peyen(1) + 1 - Poqq(1)

P(a)m) — Peven(a’m/z) + w,, Podd(a)m/2)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(1) + 1 - Poqq(1)
P(a)m) — Peven(a’m/z) + w,, Podd(a)m/2)

P(w;) = Peven(@,,,) + @5 - Podd(@)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(1) + 1 - Poqq(1)
P(a)m) — Peven(a’m/z) + w,, Podd(a)m/2)

P(w;) = Peven(@,,,) + @5 - Podd(@)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(1) + 1 - Poqq(1)
P(a)m) — Peven(a’m/z) + w,, Podd(a)m/2)

P(w;) = Peven(@,,,) + @5 - Podd(@)

P(wpn>~" = Peyen(@ps) + @p - Podd(@ms™)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(l) + 1 - Poqd(l) P(w™?) = P(1)
P(a)m) — Peven(a’m/z) + W, - Podd(a)m/2)

P(w;) = Peven(@,,,) + @5 - Podd(@)

P(wpn>~" = Peyen(@ps) + @p - Podd(@ms™)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(l) + 1 - Poqd(l) P(w™?) = P(1)
P(w,) = Peven(@) + @, - Podd(@mr) P(@"* 1 = P(w,,)

P(w;) = Peven(@,,,) + @5 - Podd(@)

P(wpn>~" = Peyen(@ps) + @p - Podd(@ms™)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(l) + 1 - Poqd(l) P(w™?) = P(1)
P(w,) = Peven(@) + @, - Podd(@mr) P(@"* 1 = P(w,,)

P(w;) = Peven(@,,,) + @5 - Podd(@)

P(wpn>~" = Peyen(@ps) + @p - Podd(@ms™)

2 m—1

So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can

m
1. Evaluate the two polynomials of degree m/2 — 1 at

12, (@,)% @2, ... ()

2. Combine the results to obtain P(x)

P(1) = Peyen(l) + 1 - Poqd(l) P(w™?) = P(1)
P(w,) = Peven(@) + @, - Podd(@mr) P(@"* 1 = P(w,,)

P(w;) = Peven(@,,,) + @5 - Podd(@)

P(wpn>~" = Peyen(@ps) + @p - Podd(@ms™) P(wr™) = P(w*71)

Pseudocode (CLRS pp. 890)

FFT(a,n)

1 ifn ==

2 return a // DFT of 1 element is the element itself
3w, = eZm'/n

4 w =1

5 a®*" = (ag,az,...,0,_2)

6 a® = (a;,as,...,a,—1)

7 yeven — FFT(aeven,n/Z)

8 y° = FFT(a*,n/2)

9 fork =0ton/2—1 // at this point, ® = w*
10 Vi = ylecven +a)y12dd

11 Vet@ja) = Vi — oy

12 W= ww,

13 return y

Running time

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x)) - B(x;) forall j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, el a)zzg_1 and evaluate

A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, el 0)227’1’_1 and evaluate

A(a)én) and B(a)én) foreachj =0,1,....2n — 1.

How much time do we need for each of the evaluations?

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, el 0)227’2’_1 and evaluate

A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.
How much time do we need for each of the evaluations?

Let 7(n) be the time required to evaluate a polynomial of degree n — 1 on all
of the 2n 2nth roots of unity.

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, el a)zzg_1 and evaluate

A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.
How much time do we need for each of the evaluations?

Let 7(n) be the time required to evaluate a polynomial of degree n — 1 on all
of the 2n 2nth roots of unity.

We need to evaluate P(x) = Peven(xz) +x- Podd(xz) at

2 2n—1
Law,,, w5 ,...,0;

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, 0)22 , .. a)22” l'and evaluate

A(a)J) and B(a)])foreachj=0,1,....2n — 1.
How much time do we need for each of the evaluations?

Let 7(n) be the time required to evaluate a polynomial of degree n — 1 on all
of the 2n 2nth roots of unity.

We need to evaluate P(x) = Peven(xz) +x- Podd(xz) at

2 2n—1
Law,,, w5 ,...,0;

Running time: T(n) < 21T(n/2) + cn

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, 0)22 , .. a)22” l'and evaluate

A(a)J) and B(a)])foreachj=0,1,....2n — 1.
How much time do we need for each of the evaluations?

Let 7(n) be the time required to evaluate a polynomial of degree n — 1 on all
of the 2n 2nth roots of unity.

We need to evaluate P(x) = Peven(xz) +x- Podd(xz) at

2 2n—1
Law,,, w5 ,...,0;

Running time: T(n) < 21T(n/2) + cn

Asymptotic running time: O(n log n)

What if we divided like this?

Assume that m = 27 for some positive integer £

Let
2
PesmallX) =pg+pix+px“+ ... +p,n_1X
_ 2
Phig(X) = P + Pt 1X + PppsaX™ + oo F Dy X

We would have: P(x) = Pgyen(x) + pULE Pogg(x)

What is the issue with this?

Running time

O(nlogn)
2 2n—1

Step 1: Choose the 2n 2nth roots of unity 1,w,,, @5 , ..., ®;
and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

What about this?

(Fast) Polynomial Interpolation

(Fast) Polynomial Interpolation

Recover C from C(x,), C(x,), ..., C(x,,)

(Fast) Polynomial Interpolation

Recover C from C(x,), C(x,), ..., C(x,,)

Main idea: We will reduce polynomial interpolation to
polynomial evaluation, which we saw how to do using D&C
earlier.

(Fast) Polynomial Interpolation

Recover C from C(x,), C(x,), ..., C(x,,)

Main idea: We will reduce polynomial interpolation to
polynomial evaluation, which we saw how to do using D&C
earlier.

2n—1
Define the polynomial D(x) = 2 C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1
D(@s) =) Cls,)- (of)
=0

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1
D@h) =) Cw3)- (k)
s=0

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1
D@h) =) Cw3)- (k)
s=0

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1
D@h) =) Cw3)- (k)
s=0

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1 2n—1
D (a)é{n) = Z Ct(Z w5;+ks>

=0

(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It

n—1 .
holds that) (wf)' =
j=0
SV) Ml S 1 M R L
Proof:Z(a),’j)]— T T T =a)k—1=0
=0 n n n

sum of geometric series

(Fast) Polynomial
Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

(Fast) Polynomial
Interpolation

2n—1

Define the polynomial D(x) = Z C(w,,) - x°, and evaluate
s=0

it at the 2nth roots of unity.

For all f such that ¢ + k is not
divisible by 2n, we have:

D)=) (> w) 3 (o) =0

s=0

(Fast) Polynomial
Interpolation

2n—1

Define the polynomial D(x) = Z C(w,,) - x°, and evaluate
s=0

it at the 2nth roots of unity.

For all f such that ¢ + k is not
divisible by 2n, we have:

2n—1 2n—1 n—1
- Eo() B
s=0

=0 s
2n—1 2n—1
— 2 Cf(2 (a)éjl‘k)s) .When t + k is divisible by 2n,
=0 =0 (i.e., when t = 2n — k) we have
af+k::]-

2n

(Fast) Polynomial
Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

For all f such that ¢ + k is not
divisible by 2n, we have:

2n—1 2n—1 n—1
D(wy,) = Z Ct(Z w5;+ks> Z (01F%)" =0

2n
s=0

2n—1 2n—1
_ K\ ic divisi
— Z: ct< z: (a);;)) When ¢ + k is divisible by 2n,

(i.e., when t = 2n — k) we have

+k _
w, " = 1

(Fast) Polynomial
Interpolation

Recover C from C(x,), C(x,), ..., C(x,,)

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate
s=0
it at the 2nth roots of unity.
1 5
We get: ¢, = — - D (%ZZ S)

2n

Alternative viewpoint

Alternative viewpoint

The Discrete Fourier Transform (DFT) of a sequence of m

complex numbers p,, py, ..., p,,_ is defined to be the
sequence of complex numbers

P(1),P(w,), P(w?), ..., P(@™ 1)

obtained by evaluating the polynomial

P(x) = py + pix +p2x2 -+ ...,p,/n_l)c’/’”‘_1

on each of the mth roots of unity.

Alternative viewpoint

[m qUI=L]

Alternative viewpoint

s %][1=l

We can compute p’ = M~ p

Alternative viewpoint

~ L

M

We can compute p’ = M~ p

Is M invertible?

Alternative viewpoint

~ L

M

We can compute p’ = M~ p
Is M invertible?

How can we compute M~1?

M is invertible

Vandermonde matrix

M is invertible

M is invertible

2 m
20z R Po ~
P
< 2 m 0
: Zl o Zl pl —— ﬁl
. : E——
2 m
Zp Z Z N
f o o o f pm_l pm_l

Vandermonde matrix

det)= || @x-x
0<i<j<t

When m = ¢ (i.e., M is square) and
7 F z; for all I #] (i.e., all zs are distinct
and thus det(M) # 0, then M is invertible.

How to compute M

[=L

M(a))

m

How to compute M

e Wl

M (a)m)

1
Lemma: M(a)m)_1 = —M(a)n_l)
n

How to compute M

|
Lemma: M(w,,)~ : = —M(w, h
n

How to compute M

|
Lemma: M(w,,)~ 1 —M(a)_l)
n

o 1 R |
Proof: M(w,,)(j,j) = @, and —M(w,,)(j,]) = —w,”
n n

|
Consider the matrix —M(w,, hy. Mw,,)
n

How to compute M

|
Lemma: M(w,,)~ 1 —M(a)_l)
n

. | U
Proof: M(w,)(j,]) = @”,and —M(w,,)(j,]) = —,”
n n

1
Consider the matrix —M(w; ') - M(w,)
n

Then we have:

—Mw;") M(@,)(.) =~ Zw—"f ol =—Zwk<f-f>
k—O

How to compute M

How to compute M

Then we have:

lM(co‘l) M(®,,)(J,]) = Zm"‘f W =—Za)k<f—f>
k 0

How to compute M

Then we have:

lM(co‘l) M(@,,)(J,]") = Zm"‘f W =—Za)k<f—f>

kO

1
Ifj = j', then —M(w,,") - M(®,,)(j,j) = 1
n

How to compute M

Then we have:

lM(co‘l) M(@,,)(J,]") = Zm"‘f W =—Za)k<f—f>

k 0
: - 1 1 ..
1) = ', then —M(wy,") - M(w,)(j, /) = 1
n
n—1

If j # j', then — Z 0 =) = 0 by summation.
" k=0

How to compute M

Then we have:

lM(co‘l) M(@,,)(J,]") = Zm"‘f W =—Za)k<f—f>

k 0
L 1 1 .
fj =Jj’ then —M(w,,") - M(w,,)(j,j) = 1
n

n—1

If j # j', then — Z 0 =) = 0 by summation.
" k=0

Why? Because —(m — 1) <j —j<m—1

How to compute V/

|
Lemma: M(a)m)_1 = —M(a)n_l)
n

|
Hence —M(w,, hy. M, (w,) = I (the identify matrix).
n

Running time

O(nlogn)
2 2n—1

Step 1: Choose the 2n 2nth roots of unity 1,w,,, @5 , ..., ®;
and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

What about this?

Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, e a)zzlf_l

and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

Convolution Theorem

For any two vectors a and b of length n where n is a power of 2,
the convolution a * b of a and b can be computed as:

a* b = DFT,! (DFTy,(a) + DFT,,(b))

