
Algorithms and Data Structures
Fast Fourier Transform

Multiplying two polynomials

Multiplying two polynomials
Suppose that we have two polynomials of degree n

Multiplying two polynomials
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

Multiplying two polynomials
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

Multiplying two polynomials
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

The product is a polynomial of degree where
the coefficient of the term is

C(x) 2n − 2
xk

Multiplying two polynomials
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

The product is a polynomial of degree where
the coefficient of the term is

C(x) 2n − 2
xk

ck = ∑
(i,j):i+j=k

aibj

Example
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

Example
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

Coefficient of is x0 = 1 a0b0

Example
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

Coefficient of is x0 = 1 a0b0

Coefficient of is x1 = x a0b1 + a1b0

Example
Suppose that we have two polynomials of degree n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

Coefficient of is x0 = 1 a0b0

Coefficient of is x1 = x a0b1 + a1b0

Coefficient of is x2 a0b2 + a1b1 + a2b0

Multiplying two polynomials
Suppose that we have two polynomials of degree

The product is a polynomial of degree where the coefficient of
the term is

Equivalently: the coefficient vector of is the convolution of the
coefficient vectors of and .

n

A(x) = a0 + a1x + a2x2 + …, + an−1xn−1

B(x) = b0 + b1x + b2x2 + …, + bn−1xn−1

C(x) 2n − 2
xk

ck = ∑
(i,j):i+j=k

aibj

c C(x) a * b
A(x) B(x)

How to compute ?C(x)

How to compute ?C(x)
Naive approach: Compute all the partial products (for every
pair) and add them up. (i, j)

How to compute ?C(x)
Naive approach: Compute all the partial products (for every
pair) and add them up. (i, j)

What is the running time in this case?

How to compute ?C(x)
Naive approach: Compute all the partial products (for every
pair) and add them up. (i, j)

What is the running time in this case?

Θ(n2)

How to compute ?C(x)
Naive approach: Compute all the partial products (for every
pair) and add them up. (i, j)

What is the running time in this case?

Θ(n2)

We will attempt to design a faster algorithm using Divide &
Conquer.

How to compute ?C(x)
Naive approach: Compute all the partial products (for every
pair) and add them up. (i, j)

What is the running time in this case?

Θ(n2)

We will attempt to design a faster algorithm using Divide &
Conquer.

Fast Fourier Transform (FFT)

Key idea: How to represent
polynomials

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors 
 

 , a = (a0, a1, …, an−1) b = (b0, b1, …, bn−1)

A different representation

A different representation

Consider the polynomial
A(x) = a0 + a1x

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

What is the a way to represent a
line uniquely?

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .x1 x2

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .x1 x2

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .x1 x2

x1

A different representation

Consider the polynomial
A(x) = a0 + a1x

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .x1 x2

x1

x2

Polynomial interpolation

Polynomial interpolation

Consider the polynomial
A(x) = a0 + a1x + a2x2 + …, adxd

Polynomial interpolation

Consider the polynomial
A(x) = a0 + a1x + a2x2 + …, adxd

Fact: Any polynomial of degree
can be represented by its values
on at least points.

d

d + 1

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors 
 

 , a = (a0, a1, …, an−1) b = (b0, b1, …, bn−1)

Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors 
 

 , a = (a0, a1, …, an−1) b = (b0, b1, …, bn−1)

Representation 2: via their values on at least pointsn

New strategy

New strategy

Step 1: Choose values and evaluate
and for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

New strategy

Step 1: Choose values and evaluate
and for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

Step 2: Compute for all  
(these are now just numbers).

C(xj) = A(xj) ⋅ B(xj) j

New strategy

Step 1: Choose values and evaluate
and for each .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

Step 2: Compute for all  
(these are now just numbers).

C(xj) = A(xj) ⋅ B(xj) j

Step 3: Recover from .C C(x1), C(x2), …, C(x2n)

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

A different representation

Consider the polynomial

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .

A(x) = a0 + a1x

x1 x2

x1

x2

A different representation

Consider the polynomial

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .

A(x) = a0 + a1x

x1 x2

x1

x2

A different representation

Consider the polynomial

What is this, geometrically?

What is the a way to represent a
line uniquely?

Via two values and .

A(x) = a0 + a1x

x1 x2

x1

x2

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

We will choose the values carefully!2n

Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument : the angle of the radius with the positive real axis ϕ

Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument : the angle of the radius with the positive real axis ϕ

r

Magnitude : r r = |z | = a2 + b2

Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument : the angle of the radius with the positive real axis ϕ

r

Magnitude : r r = |z | = a2 + b2

Polar Coordinates

z = r(cos ϕ + i sin ϕ)

Quick Detour: Complex Numbers ℂ

Complex number z = a + bi
⏟real part

⏞imaginary part

Im

Rea

b z = a + bi

i2 = − 1

ϕ

Argument : the angle of the radius with the positive real axis ϕ

r

Magnitude : r r = |z | = a2 + b2

Polar Coordinates

z = r(cos ϕ + i sin ϕ)

eix = cos x + i sin xEuler’s formula:

z = r ⋅ eiϕ

Roots of Unity

Roots of Unity
Let be a positive integer. An th root of unity is a (complex)
number satisfying the equation .

n n
x xn = 1

Roots of Unity
Let be a positive integer. An th root of unity is a (complex)
number satisfying the equation .

n n
x xn = 1

The th roots of unity are: 
 

n

cos
2kπ
n

+ i sin
2kπ
n

, for k = 0,1,…, n − 1

Roots of Unity
Let be a positive integer. An th root of unity is a (complex)
number satisfying the equation .

n n
x xn = 1

The th roots of unity are: 
 

n

cos
2kπ
n

+ i sin
2kπ
n

, for k = 0,1,…, n − 1

Equivalently: e
2kπi

n , for k = 0,1,…, n − 1

Roots of Unity
Let be a positive integer. An th root of unity is a (complex)
number satisfying the equation .

n n
x xn = 1

The th roots of unity are: 
 

n

cos
2kπ
n

+ i sin
2kπ
n

, for k = 0,1,…, n − 1

Equivalently: e
2kπi

n , for k = 0,1,…, n − 1

The quantity is called the  
principal th root of unity.

e
2πi
n = cos(2π/n) + i sin(2π/n)

n

Roots of Unity
The quantity is called the
principal th root of unity.

e
2πi
n = cos(2π/n) + i sin(2π/n)

n

Roots of Unity
The quantity is called the
principal th root of unity.

e
2πi
n = cos(2π/n) + i sin(2π/n)

n

Let ωn = cos(2π/n) + i sin(2π/n) = e
2πi
n

Roots of Unity
The quantity is called the
principal th root of unity.

e
2πi
n = cos(2π/n) + i sin(2π/n)

n

Let ωn = cos(2π/n) + i sin(2π/n) = e
2πi
n

The th roots of unity can then be written as: 
 

  
 

since

n

1,ωn, ω2
n , ω3

n , …, ωn−1
n

e
2πki

n = (e
2πi
n)

k
= ωk

n

Roots of Unity
The quantity is called the
principal th root of unity.

e
2πi
n = cos(2π/n) + i sin(2π/n)

n

Let ωn = cos(2π/n) + i sin(2π/n) = e
2πi
n

The th roots of unity can then be written as: 
 

  
 

since

n

1,ωn, ω2
n , ω3

n , …, ωn−1
n

e
2πki

n = (e
2πi
n)

k
= ωk

n

ω0
8 = 1

ω8 =
1 + i

2

ω2
8 = i

ω3
8 = −

1 − i

2

ω4
8 = − 1

ω5
8 = −

1 + i

2
ω6

8 = − i

ω7
8 =

1 − i

2

Properties of the Roots of Unity

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Proof: ωdk
dn = (e

2πi
dn)

dk
= e

2πidk
dn = e

2πik
n = ωk

n

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Proof: ωdk
dn = (e

2πi
dn)

dk
= e

2πidk
dn = e

2πik
n = ωk

n

Halving: Let be even. Then if we square all the th roots
of unity, we get all th roots of unity, each one twice.

n > 0 n n
n/2 (n/2)

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Proof: ωdk
dn = (e

2πi
dn)

dk
= e

2πidk
dn = e

2πik
n = ωk

n

Halving: Let be even. Then if we square all the th roots
of unity, we get all th roots of unity, each one twice.

n > 0 n n
n/2 (n/2)

Proof: , also (ωk
n)2 = ω2k

n = ωk
n/2

(ωk+n/2
n)2 = ω2k+n

n = ω2k
n ⋅ ωn

n = ωk
n/2

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Proof: ωdk
dn = (e

2πi
dn)

dk
= e

2πidk
dn = e

2πik
n = ωk

n

Halving: Let be even. Then if we square all the th roots
of unity, we get all th roots of unity, each one twice.

n > 0 n n
n/2 (n/2)

Proof: , also (ωk
n)2 = ω2k

n = ωk
n/2

(ωk+n/2
n)2 = ω2k+n

n = ω2k
n ⋅ ωn

n = ωk
n/2

Properties of the Roots of Unity

Properties of the Roots of Unity

Summation: Suppose and is not divisible by . It

holds that

n ≥ 1 k n
n−1

∑
j=0

(ωk
n)j = 0

Properties of the Roots of Unity

Summation: Suppose and is not divisible by . It

holds that

n ≥ 1 k n
n−1

∑
j=0

(ωk
n)j = 0

Proof:
n−1

∑
j=0

(ωk
n)j = (ωk

n)n − 1
ωk

n − 1
= (ωn

n)k − 1
ωk

n − 1
=

1k − 1
ωk

n − 1
= 0

Properties of the Roots of Unity

Summation: Suppose and is not divisible by . It

holds that

n ≥ 1 k n
n−1

∑
j=0

(ωk
n)j = 0

Proof:
n−1

∑
j=0

(ωk
n)j = (ωk

n)n − 1
ωk

n − 1
= (ωn

n)k − 1
ωk

n − 1
=

1k − 1
ωk

n − 1
= 0

sum of geometric series

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

We will choose the values carefully!2n

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

Ω(n) for each j Ω(n2) overall

? no idea for now

We will choose the th (complex) roots of unity.2n

Discrete Fourier Transform

Discrete Fourier Transform
The Discrete Fourier Transform (DFT) of a sequence of
complex numbers is defined to be the
sequence of complex numbers  
 

 
 
obtained by evaluating the polynomial  
 

 
 
on each of the th roots of unity.

m
p0, p1, …, pm−1

P(1), P(ωm), P(ω2
m), …, P(ωm−1

m)

P(x) = p0 + p1x + p2x2 + …, pm−1xm−1

m

Divide and Conquer

Divide and Conquer
Assume that for some positive integer .m = 2ℓ ℓ

Divide and Conquer
Assume that for some positive integer .m = 2ℓ ℓ

Let  
 Peven(x) = p0 + p2x + p4x2 + … + pm−2xm/2−1

Podd(x) = p1 + p3x + p5x2 + … + pm−1xm/2−1

Divide and Conquer
Assume that for some positive integer .m = 2ℓ ℓ

Let  
 Peven(x) = p0 + p2x + p4x2 + … + pm−2xm/2−1

Podd(x) = p1 + p3x + p5x2 + … + pm−1xm/2−1

Observe that: P(x) = Peven(x2) + x ⋅ Podd(x2)

Divide and Conquer
Assume that for some positive integer .m = 2ℓ ℓ

Let  
 Peven(x) = p0 + p2x + p4x2 + … + pm−2xm/2−1

Podd(x) = p1 + p3x + p5x2 + … + pm−1xm/2−1

Observe that: P(x) = Peven(x2) + x ⋅ Podd(x2)

So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

We successfully halved the degree

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)
It seems we are still evaluating on pointsm − 1

We successfully halved the degree

Properties of the Roots of Unity

Cancellation: Let . It holds that n ≥ 0,k ≥ 0,d > 0 ωdk
dn = ωk

n

Proof: ωdk
dn = (e

2πi
dn)

dk
= e

2πidk
dn = e

2πik
n = ωk

n

Halving: Let be even. Then if we square all the th roots
of unity, we get all th roots of unity, each one twice.

n > 0 n n
n/2 (n/2)

Proof: , also (ωk
n)2 = ω2k

n = ωk
n/2

(ωk+n/2
n)2 = ω2k+n

n = ω2k
n ⋅ ωn

n = ωk
n/2

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)
It seems we are still evaluating on pointsm

We successfully halved the degree

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)
It seems we are still evaluating on pointsm

We successfully halved the degree

This is a list of the th roots of unity, each appearing twicem /2 (m /2)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)
It seems we are still evaluating on pointsm

We successfully halved the degree

This is a list of the th roots of unity, each appearing twicem /2 (m /2)
So we only need to evaluate at pointsm /2

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

P(ωm/2−1
m) = Peven(ωm/2−1

m/2) + ω2
m ⋅ Podd(ωm/2−1

m/2)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

P(ωm/2−1
m) = Peven(ωm/2−1

m/2) + ω2
m ⋅ Podd(ωm/2−1

m/2)

P(ωm/2
m) = P(1)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

P(ωm/2−1
m) = Peven(ωm/2−1

m/2) + ω2
m ⋅ Podd(ωm/2−1

m/2)

P(ωm/2
m) = P(1)

P(ωm/2+1
m) = P(ωm)

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

P(ωm/2−1
m) = Peven(ωm/2−1

m/2) + ω2
m ⋅ Podd(ωm/2−1

m/2)

P(ωm/2
m) = P(1)

P(ωm/2+1
m) = P(ωm)

⋮

Divide and Conquer
So to evaluate at , we can 
1. Evaluate the two polynomials of degree at

 
2. Combine the results to obtain

P(x) 1,ωm, ω2
m, …, ωm−1

m
m/2 − 1

12, (ωm)2, (ω2
m)2, …, (ωm−1

m)2

P(x)

P(1) = Peven(1) + 1 ⋅ Podd(1)

P(ωm) = Peven(ωm/2) + ωm ⋅ Podd(ωm/2)

P(ω2
m) = Peven(ω2

m/2) + ω2
m ⋅ Podd(ω2

m/2)

⋮

P(ωm/2−1
m) = Peven(ωm/2−1

m/2) + ω2
m ⋅ Podd(ωm/2−1

m/2)

P(ωm/2
m) = P(1)

P(ωm/2+1
m) = P(ωm)

⋮

P(ωm−1
m) = P(ωm/2−1

m)

Pseudocode (CLRS pp. 890)

Running time

Step 1: Choose values and evaluate
and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n x1, x2, …, x2n A(xj)
B(xj) j = 1,2,…,2n

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Let be the time required to evaluate a polynomial of degree on all
of the th roots of unity.

T(n) n − 1
2n 2n

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Let be the time required to evaluate a polynomial of degree on all
of the th roots of unity.

T(n) n − 1
2n 2n

We need to evaluate at P(x) = Peven(x2) + x ⋅ Podd(x2)
1,ω2n, ω2

2n, …, ω2n−1
2n

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Let be the time required to evaluate a polynomial of degree on all
of the th roots of unity.

T(n) n − 1
2n 2n

We need to evaluate at P(x) = Peven(x2) + x ⋅ Podd(x2)
1,ω2n, ω2

2n, …, ω2n−1
2n

Running time: T(n) ≤ 2T(n /2) + cn

Running time
Step 1: Choose the th roots of unity and evaluate

 and for each .
2n 2n 1,ω2n, ω2

2n, …, ω2n−1
2n

A(ω j
2n) B(ω j

2n) j = 0,1,…,2n − 1

How much time do we need for each of the evaluations?

Let be the time required to evaluate a polynomial of degree on all
of the th roots of unity.

T(n) n − 1
2n 2n

We need to evaluate at P(x) = Peven(x2) + x ⋅ Podd(x2)
1,ω2n, ω2

2n, …, ω2n−1
2n

Running time: T(n) ≤ 2T(n /2) + cn

Asymptotic running time: O(n log n)

What if we divided like this?

Assume that for some positive integer .

Let  
 

We would have:

What is the issue with this?

m = 2ℓ ℓ

Psmall(x) = p0 + p1x + p2x2 + … + pm/2−1xm/2−1

Pbig(x) = pm/2 + pm/2+1x + pm/2+2x2 + … + pm−1xm/2−1

P(x) = Peven(x) + xm/2 ⋅ Podd(x)

Running time

Step 1: Choose the th roots of unity
and evaluate and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n 2n 1,ω2n, ω2
2n, …, ω2n−1

2n
A(ω j

2n) B(ω j
2n) j = 0,1,…,2n − 1

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

O(n log n)

What about this?

(Fast) Polynomial Interpolation

(Fast) Polynomial Interpolation

Recover from C C(x1), C(x2), …, C(x2n)

(Fast) Polynomial Interpolation

Recover from C C(x1), C(x2), …, C(x2n)

Main idea: We will reduce polynomial interpolation to
polynomial evaluation, which we saw how to do using D&C
earlier.

(Fast) Polynomial Interpolation

Recover from C C(x1), C(x2), …, C(x2n)

Main idea: We will reduce polynomial interpolation to
polynomial evaluation, which we saw how to do using D&C
earlier.

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
s=0

C(ωs
2n) ⋅ (ωk

2n)s

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
s=0

C(ωs
2n) ⋅ (ωk

2n)s

=
2n−1

∑
s=0 (

2n−1

∑
t=0

ct (ωs
2n)t) (ωk

2n)s

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
s=0

C(ωs
2n) ⋅ (ωk

2n)s

=
2n−1

∑
s=0 (

2n−1

∑
t=0

ct (ωs
2n)t) (ωk

2n)s

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωs
2n)t (ωk

2n)s)

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
s=0

C(ωs
2n) ⋅ (ωk

2n)s

=
2n−1

∑
s=0 (

2n−1

∑
t=0

ct (ωs
2n)t) (ωk

2n)s

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωs
2n)t (ωk

2n)s) =
2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

(Fast) Polynomial Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωt+k
2n)s)

Properties of the Roots of Unity

Summation: Suppose and is not divisible by . It

holds that

n ≥ 1 k n
n−1

∑
j=0

(ωk
n)j = 0

Proof:
n−1

∑
j=0

(ωk
n)j = (ωk

n)n − 1
ωk

n − 1
= (ωn

n)k − 1
ωk

n − 1
=

1k − 1
ωk

n − 1
= 0

sum of geometric series

(Fast) Polynomial
Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωt+k
2n)s)

(Fast) Polynomial
Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωt+k
2n)s)

For all such that is not 
divisible by , we have:

t t + k
2n

2n−1

∑
s=0

(ωt+k
2n)s = 0

(Fast) Polynomial
Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωt+k
2n)s)

For all such that is not 
divisible by , we have:

t t + k
2n

2n−1

∑
s=0

(ωt+k
2n)s = 0

When is divisible by ,  
(i.e., when) we have

t + k 2n
t = 2n − k

ωt+k
2n = 1

(Fast) Polynomial
Interpolation

Define the polynomial , and evaluate

it at the th roots of unity.

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

D(ωk
2n) =

2n−1

∑
t=0

ct (
2n−1

∑
s=0

ωst+ks
2n)

=
2n−1

∑
t=0

ct (
2n−1

∑
s=0

(ωt+k
2n)s)

For all such that is not 
divisible by , we have:

t t + k
2n

2n−1

∑
s=0

(ωt+k
2n)s = 0

When is divisible by ,  
(i.e., when) we have

t + k 2n
t = 2n − k

ωt+k
2n = 1= c2n−k ⋅ 2n

(Fast) Polynomial
Interpolation

Recover from

Define the polynomial , and evaluate

it at the th roots of unity.

We get:

C C(x1), C(x2), …, C(x2n)

D(x) =
2n−1

∑
s=0

C(ωs
2n) ⋅ xs

2n

cs =
1

2n
⋅ D (ω2n−s

2n)

Alternative viewpoint

Alternative viewpoint
The Discrete Fourier Transform (DFT) of a sequence of
complex numbers is defined to be the
sequence of complex numbers  
 

 
 
obtained by evaluating the polynomial  
 

 
 
on each of the th roots of unity.

m
p0, p1, …, pm−1

P(1), P(ωm), P(ω2
m), …, P(ωm−1

m)

P(x) = p0 + p1x + p2x2 + …, pm−1xm−1

m

Alternative viewpoint

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟M

Alternative viewpoint

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

We can compute ⃗p = M−1 ⃗̂p⏟M

Alternative viewpoint

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

We can compute ⃗p = M−1 ⃗̂p⏟M

Is invertible?M

Alternative viewpoint

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

We can compute ⃗p = M−1 ⃗̂p⏟M

Is invertible?M

How can we compute M−1?

 is invertibleM

[]1
1

1

z0 z2
0 zm

0
z2
1

zℓ

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟
z1 zm

1

z2
ℓ zm

ℓ

Vandermonde matrix

 is invertibleM

[]1
1

1

z0 z2
0 zm

0
z2
1

zℓ

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟
z1 zm

1

z2
ℓ zm

ℓ

Vandermonde matrix

det(M) = ∏
0≤i<j≤ℓ

(xj − xi)

 is invertibleM

[]1
1

1

z0 z2
0 zm

0
z2
1

zℓ

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟
z1 zm

1

z2
ℓ zm

ℓ

Vandermonde matrix

det(M) = ∏
0≤i<j≤ℓ

(xj − xi)

When (i.e., is square) and  
 for all (i.e., all ’s are distinct 

and thus , then is invertible.

m = ℓ M
zi ≠ zj i ≠ j zi

det(M) ≠ 0 M

How to compute M

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟M(ωm)

How to compute M

[]1
1

1

1 1 1
ωm ω2

m ωm−1
m

ωm−1
m ω2(m−1)

m ω(m−1)2

m

…
…

…

⋮ ⋮ ⋮ ⋮ []p0
p1

pm−1
[]̂p0

̂p1

̂pm−1

=

⏟M(ωm)

Lemma: M(ωm)−1 =
1
n

M(ω−1
n)

How to compute M
Lemma: M(ωm)−1 =

1
n

M(ω−1
n)

How to compute M
Lemma: M(ωm)−1 =

1
n

M(ω−1
n)

Proof: , and  

Consider the matrix

M(ωm)(j, j′) = ω jj′

m
1
n

M(ω−1
m)(j, j′) =

1
n

ω−jj′

m

1
n

M(ω−1
m) ⋅ M(ωm)

How to compute M
Lemma: M(ωm)−1 =

1
n

M(ω−1
n)

Proof: , and  

Consider the matrix

M(ωm)(j, j′) = ω jj′

m
1
n

M(ω−1
m)(j, j′) =

1
n

ω−jj′

m

1
n

M(ω−1
m) ⋅ M(ωm)

Then we have:
1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) =

1
n

n−1

∑
k=0

ω−kj
m ⋅ ωkj′

m =
1
n

n−1

∑
k=0

ωk(j′ −j)
m

How to compute M

How to compute M
Then we have:
1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) =

1
n

n−1

∑
k=0

ω−kj
m ⋅ ωkj′

m =
1
n

n−1

∑
k=0

ωk(j′ −j)
m

How to compute M
Then we have:
1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) =

1
n

n−1

∑
k=0

ω−kj
m ⋅ ωkj′

m =
1
n

n−1

∑
k=0

ωk(j′ −j)
m

If , then j = j′

1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) = 1

How to compute M
Then we have:
1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) =

1
n

n−1

∑
k=0

ω−kj
m ⋅ ωkj′

m =
1
n

n−1

∑
k=0

ωk(j′ −j)
m

If , then j = j′

1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) = 1

If , then by summation.j ≠ j′

1
n

n−1

∑
k=0

ωk(j′ −j)
m = 0

How to compute M
Then we have:
1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) =

1
n

n−1

∑
k=0

ω−kj
m ⋅ ωkj′

m =
1
n

n−1

∑
k=0

ωk(j′ −j)
m

If , then j = j′

1
n

M(ω−1
m) ⋅ M(ωm)(j, j′) = 1

If , then by summation.j ≠ j′

1
n

n−1

∑
k=0

ωk(j′ −j)
m = 0

Why? Because −(m − 1) ≤ j′ − j ≤ m − 1

How to compute M

Lemma:

Hence (the identify matrix).

M(ωm)−1 =
1
n

M(ω−1
n)

1
n

M(ω−1
m) ⋅ Mm(ωm) = Im

Running time

Step 1: Choose the th roots of unity
and evaluate and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n 2n 1,ω2n, ω2
2n, …, ω2n−1

2n
A(ω j

2n) B(ω j
2n) j = 0,1,…,2n − 1

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

O(n log n)

What about this?

Running time

Step 1: Choose the th roots of unity
and evaluate and for each .

Step 2: Compute for all  
(these are now just numbers).

Step 3: Recover from .

2n 2n 1,ω2n, ω2
2n, …, ω2n−1

2n
A(ω j

2n) B(ω j
2n) j = 0,1,…,2n − 1

C(xj) = A(xj) ⋅ B(xj) j

C C(x1), C(x2), …, C(x2n)

O(n)

O(n log n)

O(n log n)

Convolution Theorem

For any two vectors and of length where is a power of 2,
the convolution of and can be computed as:

a b n n
a * b a b

a * b = DFT−1
2n (DFT2n(a) + DFT2n(b))

