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Fast Fourier Transform



Multiplying two polynomials



Multiplying two polynomials

Suppose that we have two polynomials of degree n



Multiplying two polynomials

Suppose that we have two polynomials of degree n

AX)=ay+ax+ax*+...,+a,_x""!



Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!

B(x) =by+bx+byx*+...,+b,_x""}



Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) =by+bx+byx*+...,+b,_x""}

The product is a polynomial C(x) of degree 2n — 2 where
the coefficient of the term x" is



Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) =by+bx+byx*+...,+b,_x""}

The product is a polynomial C(x) of degree 2n — 2 where
the coefficient of the term x" is



Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!

B(x) = by+ bx+bx*+ ...,+b,_x""}



Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) = by+ bx+bx*+ ...,+b,_x""}

Coefficient of x” = 1 is ayb,



Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x)=by+bx+byx*+ ...,+ b, x"!

Coefficient of x” = 1 is anby

Coefficient of x! = xis agb, + a,b,



Example

Suppose that we have two polynomials of degree n
AX)=ay+ax+ax*+...,+a,_x""!
B(x) = by+ bx+bx*+ ...,+b,_x""}
Coefficient of x” = 1 is ayb,
Coefficient of x! = x is ayb, + a,b,

Coefficient of x* is ayb, + a,b; + a,b,



Multiplying two polynomials

Suppose that we have two polynomials of degree n
AX) =ag+ax +ax*+ ..., +a, x""!
B(x) =by+ bx+bx*+ ...,+b,_x""1

The product is a polynomial C(x) of degree 2n — 2 where the coefficient of
the term x* is

Cp = Z ab;
(ir)):i+j=k

Equivalently: the coefficient vector ¢ of C(x) is the convolution a * b of the
coefficient vectors of A(x) and B(x).
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What is the running time in this case?
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We will attempt to design a faster algorithm using Divide &
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Consider the polynomial
A(X) = ag + a;x + a,x* + ..., a;x?

Fact: Any polynomial of degree d
can be represented by its values

on at least d + 1 points.
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Key idea: How to represent
polynomials

Representation 1: via their coefficient vectors

a=(ayay,...,a, 1), b=(by,by,....,b, 1)

Representation 2: via their values on at least n points
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Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

We will choose the 21 values carefully!
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Quick Detour: Complex Numbers C

imaginary part

Complex numberz = a + bi  i*=-1
N——’
Im 4 real part Polar Coordinates
z=r(cos¢ +ising)

:z=a+bi

Euler’s formula: e = cosx +isin x

Z=I"°€i¢

>

Re

Argument ¢ : the angle of the radius with the positive real axis

Magnitude r: r = | 7| =\/Cl2+b2
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Properties of the Roots of Unity

Cancellation: Let n > 0,k > 0.d > 0. It holds that a)d — a)k

\ dk . .
dk 2ni . 2nidk _ 27:1{ _ k
Proof: @, = <edn) =ed =en =@,

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

2
ik 2k — .k
Proof: (a)n) =, /s also

k+n/2\ 2 Dk+n ok oon _ -k
(a)n ) = ;""" =w" 0 =w,,



Properties of the Roots of Unity

Proof: a)jk =

Halving: Let n > O be even. Then if we square all the n nth roots
of unity, we get all n/2 (n/2)th roots of unity, each one twice.

2
Ak = 2k — K
Proof: (a)n) =, = m,,, also
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Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It

n—1 .
holds that ) (wf)' =
j=0
SV ) Ml S 1 M R L
Proof:Z(a),’j)]— T T T =a)k—1=0
=0 n n n

sum of geometric series
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Running time

(Q(n) for eachj

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x;) - B(x,) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

We will choose the 2nth (complex) roots of unity.
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Discrete Fourier Transform

The Discrete Fourier Transform (DFT) of a sequence of m

complex numbers p,, py, ..., p,,_ is defined to be the
sequence of complex numbers

P(1),P(w,), P(w?), ..., P(@™ 1)

obtained by evaluating the polynomial

P(x) = py + pix +p2x2 -+ ...,p,/n_l)c’/’”‘_1

on each of the mth roots of unity.
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So to evaluate P(x) at 1,w,, a)2 . a),f,’,f_l we can

1. Evaluate the two polynomials of degree m/2 — 1 at
12 (a) )2 (0)2)2 ( m— 1)2 ) We successfully halved the degree

It seems we are still evaluating on m points

" 2. Combine th esults to obtain P(x)

This is a list of the m/2 (m/2)th roots of unity, each appearing twice

So we only need to evaluate at m/2 points
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So to evaluate P(x) at l,w,,, w,,, ..., @, ", we can
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2. Combine the results to obtain P(x)
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Pseudocode (CLRS pp. 890)

FFT(a,n)

1 ifn ==

2 return a // DFT of 1 element is the element itself
3w, = eZm'/n

4 w =1

5 a®*" = (ag,az,...,0,_2)

6 a® = (a;,as,...,a,—1)

7 yeven — FFT(aeven,n/Z)

8 y° = FFT(a*,n/2)

9 fork =0ton/2—1 // at this point, ® = w*
10 Vi = ylecven +a)y12dd

11 Vet@ja) = Vi — oy

12 W= ww,

13 return y



Running time

Step 1: Choose 2n values x|, X,, ..., X,, and evaluate A(x;)
and B(xj) foreachj = 1,2,....,2n.

Step 2: Compute C(x;) = A(x)) - B(x;) forall j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).
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Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, 0)22 , .. a)22” l'and evaluate

A(a)J ) and B(a)] )foreachj=0,1,....2n — 1.
How much time do we need for each of the evaluations?

Let 7(n) be the time required to evaluate a polynomial of degree n — 1 on all
of the 2n 2nth roots of unity.

We need to evaluate P(x) = Peven(xz) +x- Podd(xz) at

2 2n—1
Law,,, w5 ,...,0;

Running time: T(n) < 21T(n/2) + cn

Asymptotic running time: O(n log n)



What if we divided like this?

Assume that m = 27 for some positive integer £

Let
2
PesmallX) =pg+pix+px“+ ... +p,n_1X
_ 2
Phig(X) = P + Pt 1X + PppsaX™ + oo F Dy X

We would have: P(x) = Pgyen(x) + pULE Pogg(x)

What is the issue with this?



Running time

O(nlogn)
2 2n—1

Step 1: Choose the 2n 2nth roots of unity 1,w,,, @5 , ..., ®;
and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

What about this?
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(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

2n—1 2n—1
D (a)é{n) = Z Ct( Z w5;+ks>

=0



(Fast) Polynomial Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.



Properties of the Roots of Unity

Summation: Suppose n > 1 and k is not divisible by n. It

n—1 .
holds that ) (wf)' =
j=0
SV ) Ml S 1 M R L
Proof:Z(a),’j)]— T T T =a)k—1=0
=0 n n n

sum of geometric series
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(Fast) Polynomial
Interpolation

2n—1

Define the polynomial D(x) = Z C(w,,) - x°, and evaluate
s=0

it at the 2nth roots of unity.

For all f such that ¢ + k is not
divisible by 2n, we have:

2n—1 2n—1 n—1
- Eo() B
s=0

=0 s
2n—1 2n—1
— 2 Cf( 2 (a)éjl‘k)s) .When t + k is divisible by 2n,
=0 =0 (i.e., when t = 2n — k) we have
af+k::]-

2n



(Fast) Polynomial
Interpolation

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate

s=0
it at the 2nth roots of unity.

For all f such that ¢ + k is not
divisible by 2n, we have:

2n—1 2n—1 n—1
D(wy,) = Z Ct( Z w5;+ks> Z (01F%)" =0

2n
s=0

2n—1 2n—1
_ K\ ic divisi
— Z: ct< z: (a);; )) When ¢ + k is divisible by 2n,

(i.e., when t = 2n — k) we have

+k _
w, " = 1



(Fast) Polynomial
Interpolation

Recover C from C(x,), C(x,), ..., C(x,,)

2n—1
Define the polynomial D(x) = Z C(w,,) - x°, and evaluate
s=0
it at the 2nth roots of unity.
1 5
We get: ¢, = — - D (%ZZ S)

2n
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Alternative viewpoint

The Discrete Fourier Transform (DFT) of a sequence of m

complex numbers p,, py, ..., p,,_ is defined to be the
sequence of complex numbers

P(1),P(w,), P(w?), ..., P(@™ 1)

obtained by evaluating the polynomial

P(x) = py + pix +p2x2 -+ ...,p,/n_l)c’/’”‘_1

on each of the mth roots of unity.
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Alternative viewpoint

~ L

M

We can compute p’ = M~ p
Is M invertible?

How can we compute M~1?



M is invertible
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M is invertible

2 m
20z R Po ~
P
< 2 m 0
: Zl o Zl pl —— ﬁl
. : E——
2 m
Zp Z Z N
f o o o f pm_l pm_l

Vandermonde matrix

det)= || @x-x
0<i<j<t

When m = ¢ (i.e., M is square) and
7 F z; for all I # ] (i.e., all zs are distinct
and thus det(M) # 0, then M is invertible.



How to compute M

[ =L

M(a) )

m



How to compute M

e Wl

M (a)m)

1
Lemma: M(a)m)_1 = —M(a)n_l)
n
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How to compute M

|
Lemma: M(w,, )~ 1 —M(a)_l)
n

o 1 R |
Proof: M(w,,)(j,j) = @, and —M(w,, )(j,]) = —w,”
n n

|
Consider the matrix —M(w,, hy. Mw,,)
n



How to compute M

|
Lemma: M(w,, )~ 1 —M(a)_l)
n

. | U
Proof: M(w,)(j,]) = @”,and —M(w,, )(j,]) = —,”
n n

1
Consider the matrix —M(w; ') - M(w,)
n

Then we have:

—Mw;") M(@,)(. ) =~ Zw—"f ol =—Zwk<f-f>
k—O
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How to compute M
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kO

1
Ifj = j', then —M(w,,") - M(®,,)(j,j) = 1
n
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How to compute M

Then we have:

lM(co‘l) M(@,,)(J,]") = Zm"‘f W =—Za)k<f—f>

k 0
L 1 1 .
fj =Jj’ then —M(w,,") - M(w,,)(j,j) = 1
n

n—1

If j # j', then — Z 0 =) = 0 by summation.
" k=0

Why? Because —(m — 1) <j —j<m—1



How to compute V/

|
Lemma: M(a)m)_1 = —M(a)n_l)
n

|
Hence —M(w,, hy. M, (w,) = I (the identify matrix).
n



Running time

O(nlogn)
2 2n—1

Step 1: Choose the 2n 2nth roots of unity 1,w,,, @5 , ..., ®;
and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).

What about this?



Running time

Step 1: Choose the 2n 2nth roots of unity 1,w,,, a)zzn, e a)zzlf_l

and evaluate A(a)én) and B(a)én) foreachj = 0,1,....2n — 1.

Step 2: Compute C(x;) = A(x;) - B(x;) for all j
(these are now just numbers).

Step 3: Recover C from C(x,), C(x,), ..., C(x,,).




Convolution Theorem

For any two vectors a and b of length n where n is a power of 2,
the convolution a * b of a and b can be computed as:

a* b = DFT,! (DFTy,(a) + DFT,,(b))



