
Algorithms and Data Structures
Asymptotic Notation and Divide and Conquer 

Fundamentals



Example: Running Time of InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

Best case? Sorted array,  tj = 1

Worst case? Reverse sorted array,  tj = j

Bounded by some         for some constant ccn

   Bounded by some           for some constant ccn2



Asymptotic Notation

• When n becomes large, it makes less of a difference if an 
algorithm takes  or  steps to finish.


• In particular,  steps are fewer than  steps.


• We would like to avoid having to calculate the precise 
constants.


• We use asymptotic notation.

2n 3n

3 lg n 2n
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-notation.  : there exist positive constants 
, , and  such that  for 

all .

O O(g(n)) = f(n)
c n0 0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

Ω Ω(g(n)) = f(n)
c n0 0 ≤ c ⋅ g(n) ≤ f(n) n ≥ n0

Θ Θ(g(n)) = f(n)
c1 c2 n0 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

n ≥ n0
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Asymptotic Notation
-notation.  : there exist positive constants  and 
 such that  for all .


For sufficiently large inputs, there is a constant such that  is 
not smaller than . 


For example, for sufficiently large inputs,  is larger than . 
Therefore, .


Use: If we can upper bound the running time of an algorithm by 
, where  is some constant and  is a function of the 

input, then we can say that the running time is .

O O(g(n)) = f(n) c
n0 0 ≤ f(n) ≤ c ⋅ g(n) n ≥ n0

c ⋅ g(n)
f(n)

2n 3 lg n
3 lg n = O(n)

c ⋅ g(n) c g( ⋅ )
O(g(n))



Asymptotic Notation
-notation.  : there exist positive constants  

and  such that  for all .


“The rate of growth of  is at least that of .” 

-notation.  : there exist positive constants 
, , and  such that  for 

all . “The rate of growth of  is at most that of .”


“The rate of growth of  is the same as that of .”

Ω Ω(g(n)) = f(n) c
n0 0 ≤ c ⋅ g(n) ≤ f(n) n ≥ n0

f(n) g(n)

Θ Θ(g(n)) = f(n)
c1 c2 n0 0 ≤ c1 ⋅ g(n) ≤ f(n) ≤ c2 ⋅ g(n)

n ≥ n0 f(n) g(n)

f(n) g(n)



Little-O, Little-Omega
-notation.  : for any constant , there exists a 

constant  such that  for all .


“The rate of growth of  is smaller than that of .” 

-notation.  : for any constant , there exists 
a constant  such that  for all 

.


“The rate of growth of  is larger than that of .”

o o(g(n)) = f(n) c
n0 > 0 0 ≤ f(n) < c ⋅ g(n) n ≥ n0

f(n) g(n)

ω ω(g(n)) = f(n) c
n0 > 0 0 ≤ c ⋅ g(n) < f(n)

n ≥ n0

f(n) g(n)



Little-O
-notation.  : for any constant , there exists a 

constant  such that  for all .


Equivalent (but less formal) definition: .


As  approaches infinity,  becomes insignificant 
compared to .


Example: .

o o(g(n)) = f(n) c
n0 > 0 0 ≤ f(n) < c ⋅ g(n) n ≥ n0

lim
n→∞

f(n)
g(n)

= 0

n f(n)
g(n)

2n = o(n2)



Little-Omega
-notation.  : for any constant , there exists a 

constant  such that  for all .


Equivalent (but less formal) definition: .


As  approaches infinity,  becomes insignificant 
compared to .


Example: .

ω ω(g(n)) = f(n) c
n0 > 0 0 ≤ c ⋅ g(n) < f(n) n ≥ n0

lim
n→∞

f(n)
g(n)

= ∞

n g(n)
f(n)

4n2 = ω(n)
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Examples
5n3 + 100 = O(n3)

5n3 + 100 = Ω(n3)

5n3 + 100 = Θ(n3)

5n3 + 100 = O(n4)

5n3 + 100 = o(n4)

5n3 + 100 = Ω(n2)

5n3 + 100 = ω(n2)

lg n = o(n5)

n5 = o(2n)

lg(4n) = lg n + lg 4 = O(lg n)

lg(n4) = 4 lg n = O(lg n)

(4n)3 = 64n3 = Θ(n3)



In class quiz



Running time hierarchy

O(log n) O(n) O(n log n) O(n2) O(n↵) O(cn)

logarithmic linear quadratic polynomial exponential

The algorithm 

does not even 


read the

whole input.

The algorithm

accesses the


input only

a constant

number of 


times.

The algorithm

splits the inputs

into two pieces

of similar size,


solves each part

and merges the


solutions.

The algorithm

considers pairs


of elements.

The algorithm

performs many

nested loops.

The algorithm

considers many

subsets of the

input elements.

constant O(1)

superconstant !(1)

sublinear o(n)

superlinear !(n)

!(n↵)superpolynomial

o(cn)subexponential
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Example: Running Time of InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX
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tj times
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n
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Example: Running Time of InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times

T (n) = c1n+ c2(n� 1) + c3(n� 1) + c4

nX

j=2

tj + c5

nX

j=2

(tj � 1) + c6

nX

j=2

(tj � 1) + c7(n� 1)

This means that tj ≤ j

T(n) ≤ c1n + c2(n − 1) + c3(n − 1) + c4

n

∑
j=2

j + c5

n

∑
j=2

( j − 1) + c6

n

∑
j=2

( j − 1) + c7(n − 1)

T(n) ≤ C ⋅ n + C′ ⋅
n(n + 1)

2
= O(n2)
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Upper Bounds
• We proved that on any possible input, InsertionSort takes time 

O(n2) .

• This is an upper bound, because the running time cannot 
be more than this (asymptotically). 

• Sometimes we can be happy and stop there.

• But what if our analysis was very “loose”? 

• We bounded . Is this possible for this to happen or 
are we being too “generous”?

tj ≤ j
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Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the 
problem, our algorithm will take time (at most) .

O(g1(n))
O(g1(n))

Lower Bound : There exists at least one input to the 
problem, on which our algorithm will take time (at least) 

.

Ω(g2(n))

Ω(g2(n))

When , we say that our running time analysis 
is tight, and we have fully understood the (asymptotic, 
worst-case) running time of the algorithm.

g1(n) = g2(n)
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Example: Running Time of InsertionSort

n times
for loops, the tests are executed


one more time than the loop body

n-1 times

n-1 times nX

j=2

tj times
nX

j=2

(tj � 1) times
n-1 times
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j=2
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nX

j=2

(tj � 1) + c6

nX
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Worst case? Reverse sorted array,  tj = j    Bounded by some           for some constant ccn2

To show the lower bound, we construct explicitly a reverse sorted array (choosing numbers) 
and explain how the algorithm will make  comparisons in each step .j j

Try it at home!



Upper and Lower (Worst-
Case) Bounds

Upper Bound : On any possible input to the 
problem, our algorithm will take time (at most) .


Lower Bound : There exists at least one input to the 
problem, on which our algorithm will take time (at least) 

.


When , we say that our running time analysis 
is tight, and we have fully understood the (asymptotic, 
worst-case) running time of the algorithm.

O(g1(n))
O(g1(n))

Ω(g2(n))

Ω(g2(n))

g1(n) = g2(n)
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and Conquer
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Merging two sorted arrays

Given two sorted arrays A[1,…,n] and B[1,…,m], produce a 
sorted array C[1, …, n+m] containing all the elements of A 
and B.

5 7 9 12 3 10 11

3 5 7 9 10 11 12
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Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m 

i=1, j=1


For k=1, … , m+n-1 
       
        If A[i] ≤ B[j] 
               C[k] = A[i] 
               i=i+1 
        Else 
               C[k] = B[j] 
               j=j+1 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Procedure Merge
Procedure Merge(A, B) 
/* Recall that |A| = n and |B| = m */ 
 
Initialise array C of size n+m 

i=1, j=1


For k=1, … , m+n-1 
       
        If A[i] ≤ B[j] 
               C[k] = A[i] 
               i=i+1 
        Else 
               C[k] = B[j] 
               j=j+1 
 

What is the running time of Merge?

How many times can an element

be compared in the worst case?

1, 3, 5 , … , 2n-1
n, n+2, n+4 , … , 3n-2

Charging argument: The cost

of each iteration is “charged”


to the “winner” of the comparison.

O(m+n)
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The Mergesort algorithm
• Divide and conquer algorithm.

• Split the array A[1,…,n] to two subarrays,  
A[1,…,n/2] and A[n/2+1, …, n]

• Sort each subarray using Mergesort.

• Stop the recursion when the subarray contains only one 
element.

• Merge the sorted subarrays A[1,…,n/2] and A[n/2+1, …, n] 
using the Merge procedure.



Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )



Mergesort pseudocode

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )

Initial call: Mergesort(A[i,…,n])
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Mergesort example
6 4 8 9 2 1 3

6 4 8 9 2 1 3

64 8 921 3

divide merge

1 2 3 4 6 8 9
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The Quicksort algorithm
• Mergesort was based on the Merge procedure for joining the 

sorted sub-arrays into a sorted array.

• Quicksort first divides the array into two parts, such that the 
first part is “smaller” than the second part.

• This is done via the Partition procedure.

• Then it calls itself recursively.

• The two parts are joined, but this is trivial.



The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i 
 
    For h = i to j do 
 
          If A[h] < x 
                 
                Swap A[k] with A[h]  
                k = k + 1  
 
         Swap A[k] with A[h]


Return k 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The Partition procedure
Procedure Partition(A[i,…,j]) 
 
    Choose a pivot element x of A 
 
    k = i 
 
    For h = i to j do 
 
          If A[h] < x 
                 
                Swap A[k] with A[h]  
                k = k + 1  
 
         Swap A[k] with A[h]


Return k 
 

Correctness of Partition: 
(CLRS p. 171-173)

Running time O(n)
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The Quicksort algorithm
2 871 3 54

Sort this using

Quicksort

Sort this using

Quicksort

Algorithm Quicksort(A[i,…,j]) 
 
            y = Partition(A[i,…,j]) 
                  Quicksort(A[i,…,y-1]) 
                  Quicksort(A[y+1,…,j])
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Divide-and-Conquer
• Split the input into smaller sub-instances.

• Solve each sub-instance separately.

• Combine the solutions of the sub-instances into a 
solution for the problem.

• Often: For each sub-instance, the algorithm calls itself to 
solve it (recursion). 
 
The instances become so small that they can be solved 
via a brute force algorithm.
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Worst-case Running Times

What is the worst-case running time of Mergesort?

Θ(n lg n)

What is the worst-case running time of Quicksort?

Θ(n2)

How do we prove these? 
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Recurrence relation:
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Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )



Worst-case Running Times, 
Upper Bounds

Recurrence relation:

T(n) = 2T(n/2) + f(n)

where f(n) = O(n)

If we solve the recurrence 
relation we obtain 
T(n) = O(n lg n)

(next lecture)

Algorithm Mergesort(A[i,…,j]) 
 
If i=j, return i 

q=(i+j)/2


Aleft=Mergesort(A[i,…,q]) 
Aright=Mergesort(A[q+1,…,n]) 
return Merge( Aleft , Aright )


