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Motivation
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(b) Distributed Multi-worker Execution
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Why distributed ML systems?

* Performance
* Reducing the time to complete a data epoch

* Memory wall

* Economy
* Multiple commodity servers, instead of a single expensive high-end server

e Hardware failure tolerance
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Program (i.e., Model Weights)

Forward pass Activations
Training | Dpata Op1 Op2 Op3
Worker ! (Weights (Weights Weights) !
Backward pass  Ge— =
Gradient 1 Gradient 2 Gradient 3

________________________________________________________________________________________________

Workers must have sufficient memory to store data, weights, activations & gradients
* Otherwise, you get Out-Of-Memory (OOM) exception



https://pytorch.org/docs/stable/notes/faq.html

THE UNIVERSITY of EDINBURGH

- informatics

Questions?



THE UNIVERSITY of EDINBURGH

informatics

Parallel training methods

- Single Data Multiple Data

Single-Program-Single-Data (SPSD) Single-Program-Multiple-Data (SPMD)

Single Program
Single Worker Training Data Parallel Training

Multiple-Program-Single-Data (MPSD) Multiple-Program-Multiple-Data (MPMD)
Multiple Program
Model Parallel Training Hybrid Parallel Training
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Replicated Program
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Model parallel training: Intra-operator
Program Partition 1
| Opl
Worker 1 Data Partition 1 Op2
' Broadcast Combine
Remove (Gather)
memory N
bottleneck

Op1l

Worker 2 Partition 2
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Program Partition 2
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Model parallel training: Inter-operator

Program Partition 1
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Hybrid parallel training
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How to choose parallelism methods?

* Empirical parallelism
* TensorFlow Mesh

e Semi-automatic parallelism

* Manually partition a few upstream operators and propagate the partitioning to
downstream operators

e Automatic parallelism
* Build a cost model for evaluating different parallel methods
e Search for the best methods that incur minimal costs
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Pipeline parallelism

Computing the averaged gradients

for micro-batches

Time

Model
Partitions
I—T—' Worker 3 Forward Pass F
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Creating pipeline by dividing a data
partition into micro-batches

Backward Pass

o
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Optimising micro-batch size

Model Time
Partitions .
LTJ Worker 3 Fs Fs B, B, Scheduling micro-batches
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] workero0 Fo Fo [ Bubble } Bo Bo

Scheduling micro-batches

* Small micro-batch reduces bubble size; but incur large micro-batch scheduling overheads
e Large micro-batch incurs large bubble; but come with small micro-batch scheduling overheads
e Optimal micro-batch size must balance bubble size and scheduling overheads
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Design aspects of distributed ML systems

* Cluster elasticity
* Reserving a large number of GPU servers is prohibitively expensive

* Device roles in ML

* CPUs for data processing, GPUs for training (PyTorch & TensorFlow)

* This is causing problems in graph learning and reinforcement learning
* Mixed precision training

* FP8, FP16, FP32, FP64
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Summary

* Distributed ML systems are keys to tackle “End of Moore Law”
e Performance and economy benefits
 Spatial parallelism: Data-parallel, model-parallel and hybrid-parallel

* Temporal parallelism: Pipeline parallelism
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Reading

* Optional reading
 PyTorch distributed overview

e Google GPipe paper
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https://pytorch.org/tutorials/beginner/dist_overview.html
https://arxiv.org/pdf/1811.06965.pdf
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Large-Scale System Software Group

- ML system projects (capstone project / final-year projects)
- Open-source project: the 15t open-sourced textbook for ML systems

Personal website: https://luomai.github.io
Email: luo.mai@ed.ac.uk

If interested, please send me your CV, transcript, and a description of your
interest, and we can arrange a follow-up meeting



