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Many ML applications are emerging

Image

Classification

Sequence of words

Word Embedding

Sequence of words

Computer Vision NLP

Deep neural networks
• Better accuracy
• High computation cost
• Gradient-based training

Diverse applications
• Natural language processing
• Deep reinforcement learning
• Graph neural networks
• …
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Massive computational power is available

Heterogeneous processors
• CPUs, GPUs and TPUs
• 10 – 100x acceleration

Global data centres
• Easy access to PB-scale data
• 100,000s machines
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Three key factors that drive AI booming: 
Algorithms, Hardware, Data



ML frameworks: A new category of system software

Neural 
Networks

Automatic 
Differentiation

Un/semi-
structured data 
management

Training & 
Inference

Heterogenous 
Processors

Distributed 
Execution

Neural network 
libraries

(Theano, Caffe)

Data parallel 
systems 

(Spark, Giraph)

ML framework 
(PyTorch, 

TensorFlow)
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System architectures of ML frameworks

High-level Front-end Languages (Python) 

Data 
Processing

Model 
Library

Optimiser 
Library

Model 
Deployment

Computational Graph

Backend Runtime

CPU GPU TPU

1. Programming abstraction: 
Supporting ML in different applications  

2. Execution engine: Enable 
gradient-based computation & 
parallelise computation 

ArchitectureDesign Goals

3. Hardware runtime: utilise all 
heterogeneous processors 
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Data pre-
processing 

API

Neural 
Network

API

SGD
Optimiser

API

Iterative 
training

API

ML framework programming abstraction

Typical ML Workflow

Dataset

An unified programming abstraction for different ML applications (DNNs, GNNs, DRLs, …)
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Profiling & 
Debugging 

API

Model 
Serving 

API



Questions?



Expressing ML programs as computational graphs

bias

weights

features

labels

MatMul

Add

Loss

Operator

Dependency

• Explicit in TensorFlow 1
• Implicit in TensorFlow 2, PyTorch
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How to compute gradients automatically?
Automatic differentiation through the chain rule: Gradient function takes its primitive function (i) inputs
and (ii) output as parameters along with the (iii) gradient of the function outputs with respect to the 
final outputs.

Primitive 
function

Gradient
function

input

(iii) Upstream gradient

…….

…….

(ii) Primitive output(i) Primitive input

Forward pass

Backward pass
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An automatic differentiation example

bias

weights

features
MatMul

Add
Loss

grad: 
Add

grad: 
MatMul

grad: bias

grad: weights

grad: features

1.0

Initial gradient

grad: 
Loss

labels

grad: labels
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Discovering parallelism for better performance

op1

op2

op3

def model(x): 
y1 = op1(x)
y2 = op2(x)
return op3(y1, y2)

Processor
(Multi-core)

op1

op2

op3

op1

op2

op3

Imperative Execution

Parallel Execution
Time

Time

Equivalent Graph

Faster execution

X Processor
(Multi-core)
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Questions?



Frontend and backend languages

Front-end language: Python
• Simple and flexible
• Poor performance
• Global Interpreter Lock (GIL)

Back-end language: C/C++
• Hardware-friendly
• Excellent performance

op1

op2

op3

Kernel 1

Kernel 2

Kernel 3

Equivalent Back-end Graph

Data

Data

C/C++ implementation

Python implementation
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Offloading sub-graphs to heterogeneous processors

Problem: Frequently launching C++ kernels (e.g., system calls) in Python has large performance overhead

Kernel 2 Kernel 3 Kernel 4 Kernel 5

Offloading Sub-graph

Kernel 1

Discovering Sub-graph
• User annotation to discover sub-graphs: @tf.function (TensorFlow 2), @jit.script (PyTorch)
• Just-in-Time (JIT) compilation: @jit.trace (PyTorch)

Input OutputOutput Input
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Using heterogenous processors

CPU Runtime GPU Runtime

Kernel 1
(CPU)

Kernel 2
(CPU)

Kernel 3
(GPU)

Kernel 4
(GPU)

Operators in ML models have execution kernels for CPUs and GPUs

CPU Kernel Dispatcher GPU Kernel Dispatcher

Buffers CPU Threads Buffers GPU Streams

PCIe

Asynchronous
kernel execution
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Summary

High-level Front-end Languages (Python) 

Data 
Processing

Model 
Library

Optimiser 
Library

Model 
Deployment

Computation Graph

Backend Runtime

CPUs GPUs TPUs FPGAs

• Simple and flexible frontend
• Full life-cycle support

• Unified expression of computation
• Automatic differentiation
• Enabling backend execution: 

parallelism, offloading, …

• kernel dispatchers
• Supporting different processors

ML Systems ArchitectureBenefits
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Reading

• Optional reading
• Deep learning with PyTorch in 60 minutes
• TensorFlow white paper
• PyTorch white paper 
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https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
http://download.tensorflow.org/paper/whitepaper2015.pdf
https://arxiv.org/pdf/1912.01703.pdf
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