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Pseudo One-Time Pad
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One-time Pad (recall)
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Pseudo One-time Pad (POTP)
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Pseudo One-time Pad

Definition

» Let G be a deterministic algorithm, with |G (k)| = p(|k|)
» Gen(1™): output uniform n-bit key k
» Security parameter n == message space {0, 1}P(")
» Encg(m): output G(k) ®m
» Decg(c): output G(k) @ ¢

» Correctness — the same as OTP
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Security of POTP?

» Would like to be able to prove security
» Based on the assumption that G is a PRG
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Modern Crypto = Definitions + Proofs + Assumptions

» We've defined computational secrecy

» Our goal is to prove that the pseudo OTP meets that
definition

» We cannot prove this unconditionally

» Beyond our current techniques...
» Anyway, security clearly depends on G

» Can prove security based on the assumption that G is a
pseudorandom generator
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PRG Revisited
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PRG Revisited
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PRG Revisited

p(n)
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PRG Revisited
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PRG Revisited

» Let GG be an efficient, deterministic function with
|G(k)| = p(|k|)

» For any efficient D, the probabilities that D outputs 1 in
each case must be close
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Proof by Reduction

» Assume G is a pseudorandom generator

» Assume toward a contradiction that there is an efficient
attacker A who breaks POTP (as per the definition)

» Use A as a subroutine to build an efficient D that breaks
pseudorandomness of G

» By assumption, no such D exists
» —> No such A can exist
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Proof by Reduction

Reduction A’

Instance X of

problem X
—_—
Instance of
scheme T1 1
“Break”
Seolution to X
- —

IMC Textbook 2nd ed. CRC Press 2015
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Proof by Reduction (equivalent)

vVvyyvyy

v

Assume G is a pseudorandom generator
Fix some arbitrary, efficient A attacking POTP
Use A as a subroutine to build an efficient D attacking G

Relate the distinguishing gap of D to the success
probability of A

By assumption, the distinguishing gap of D must be
negligible

— Use this to bound the success probability of A
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Security of POTP

Theorem

If G is a pseudorandom generator, then the pseudo one-time
pad I is EAV-secure (i.e. computationally indistinguishable)
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The Reduction
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The Reduction
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The Reduction

if (b=b")
output 1
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The Reduction

output 1
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The Reduction

y < Up(n)
Y
m,, M,
m, b~{0,1}
OTP-Enc c

+——j2l——— A

if (b=b")

output 1 D
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The Proof

Proof by Reduction

» Implement D by using A as a subroutine
» If A runs in polynomial time, then so does D

» Relate the success Pr of D and A

» Prove that if A succeeds in breaking POTP then D
succeeds in breaking G

» i.e. reduce the security of the POTP to the security
of the underlying G
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The Attacker A

A attacks POTP via PrivK 4 i1(n)

» A(1™) outputs mg, my

» k<« Gen(1™), b+ {0,1}, ¢ < Encg(msp)
> b+ A(c)

» If b = b’ return 1 (success)

If POTP is computationally ind. (EAV-secure) then

PrPrivKan(n) =1] < ; + e(n)

— sufficient to prove the above inequality in order to prove
the security of the POTP
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The Attacker A

A attacks OTP via PrivK4 otp

1. A outputs mg, m1

2. k < Gen, b + {0,1}, ¢ < Encg(my)
3. b/ +— A(c)
4

. If b = b’ return 1 (success)

Since OTP is perfectly secret:

1
Pr[PrivK 4 0tp = 1] = S
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The Distinguisher D

D attacks G
Since G is a PRG (by assumption) =—> Je(n) = negl s.t.

|Preeu, [D(G(z)) = 1] — Prycu,, [D(y) = 1]| < e(n)
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World 0: D with a Truly Random Input

D(y) for uniform y
D simulates the PrivK 4 o1p experiment for A for a truly
random input y:

» A(1™) outputs mg, my

» Simulation:

1. D generates b < {0,1}
2. D computes ¢ = mp By
3. D sends cto A

> b+ A(c)
> If b =b' then D(y) =1
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World 0: D with a Truly Random Input

Since y is truly random, from the viewpoint of A it is as if A is
interacting with the OTP in World 0. Therefore:

i 1
Pry.u,.,[D(y) = 1] = Pr[PrivKa,otp = 1] = 2
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World 0: A interacting with OTP

y < Up(n)
Y
m,, M,
m, b~{0,1}
OTP-Enc c

+——j2l——— A

if (b=b")

output 1 D
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World 1: D with a Pseudorandom Input

D(G(x)) for pseudorandom G(x)

D simulates the PrivK 4, (1) experiment for A for a
pseudorandom input G(x):

» A(1™) outputs mg, my

» Simulation:

1. D generates b < {0, 1}
2. D computes ¢ = myp & G(x)
3. D sends cto A

> b+ A(c)
» If b = b’ then D(G(x)) =1
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World 1: D with a Pseudorandom Input

Since G(x) is pseudorandom, from the viewpoint of A it is as if
A is interacting with the POTP in World 1. Therefore:

Pry v, [D(G(x)) = 1] = Pr[PrivKa i(n) = 1]
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World 1: A interacting with POTP

output 1

kU,
G Y
m,, M,
m D-{01}
M-Enc .
b|
PR
if (b=b")
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Proof.
1) By the assumption that G is a PRG Je(n) = negl:

[Proc0,[D(G(@)) = 1] — Prycu,, [D(y) = 1]] < e(n)
2) By the simulation of PrivK 4 1 by D(y):

i 1
Pry. v, [D(y) = 1] = Pr[PrivKa,otp = 1] = >

3) By the simulation of PrivK 4 (n) by D(G(x)):
Pry v, [D(G(x)) = 1] = Pr[PrivKa i(n) = 1]

Therefore q
Pr[PrivKam(n) =1] < > + €e(n)

—> II (i.e. POTP) is EAV-secure. O
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Summary

» Proof that the pseudo OTP is secure...

» We have a provably secure scheme, rather than just a
heuristic construction!
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Summary

» Proof that the pseudo OTP is secure...
» ...with some caveats

» Assuming G is a pseudorandom generator
» Relative to our definition

» The only ways the scheme can be broken are:

» If a weakness is found in G
» If the definition isn’t sufficiently strong (next lecture!)
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Have we gained anything?

» Yes! The POTP has a key shorter than the message
» n bits vs. p(n) bits

» —> Solved one of the limitations of the OTP

» The fact that the parties internally generate a p(n)-bit
temporary string to encrypt/decrypt is irrelevant

v

The key is what the parties share in advance

v

Parties do not store the p(n)-bit temporary value
What about the other limitation? (next lectures)

\ /
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End

Reference: Section 3.3.2
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