
Introduction to Modern Cryptography

Michele Ciampi

(Slides courtesy of Prof. Jonathan Katz)

Lecture 10, Part 2

1 / 24

Message Authentication Code (MAC)

2 / 24

So Far

Last lecture

▶ Introduced message integrity

▶ Introduced message authentication codes (MAC)

This lecture

MAC algorithms and proof of security

3 / 24

A Fixed-length MAC: Intuition

We need a keyed function Mac such that:

▶ Given Mack(m1),Mack(m2), . . .

▶ ...it is infeasible to predict the value Mack(m) for any
m /∈ {m1, . . .}

PRF

Let f be PRF. Knowledge of f(x1), f(x2), . . . does not reveal
any information on f(x) : x /∈ {x1, x2, . . .}.

Idea

Let Mac be a PRF i.e. set Mack ≡ Fk

4 / 24

A Fixed-length MAC Construction

Fixed-length MAC

Let F be a length-preserving PRF (i.e. block cipher). Construct
the following MAC Π:

▶ Gen: choose a uniform key k for F

▶ Mack(m): output Fk(m)

▶ Vrfyk(m, t): output 1 iff Fk(m) = t

5 / 24

A Fixed-length MAC Construction

Theorem

F is a PRF =⇒ Π is a secure MAC

Proof

By reduction

6 / 24

Proof by Reduction

IMC Textbook 2nd ed. CRC Press 2015

7 / 24

Proof by Reduction (see CPA-security)

High level

▶ Attacker A attacks MAC Π (as was defined)

▶ Design distinguisher D that uses A as a subroutine to
attack the PRF F
▶ i.e. D tries to distinguish F from a random function (RF)

▶ D simulates to A the steps in the ForgeA,Π(n) experiment
for F and for a RF

▶ Relate the success Pr of A to the success Pr of D

▶ If A succeeds =⇒ D succeeds =⇒ F ̸= PRF

▶ contradicts F PRF =⇒ A can not succeed =⇒ Π is a
secure MAC

8 / 24

The ForgeA,Π(n) Experiment (Recall)

Fix A,Π. Define randomized experiment ForgeA,Π(n):

▶ k← Gen(1n)
▶ A interacts with an oracle Mack(·):

▶ A submits m1, . . . ,mi to Mack(·)
▶ A collects back t1, . . . , ti from Mack(·)
▶ Let M = {m1, . . . ,mi} be the set of messages submitted

to the oracle

▶ A outputs (m, t)

▶ A succeeds, and the experiment evaluates to 1, if
Vrfyk(m, t) = 1 and m /∈M

Π is secure if ∀ PPT A, ∃ϵ negl. such that
Pr[ForgeA,Π(n) = 1] ≤ ϵ(n)

9 / 24

Proof by Reduction (in Picture)

A attacks the MAC Π

10 / 24

Proof by Reduction (in Picture)

D uses A as a subroutine in distingishing between RF f and
PRF Fk for uniform k

10 / 24

Proof by Reduction (in Picture)

A requests the tag on message m1

10 / 24

Proof by Reduction (in Picture)

D forwards m1 to the oracle O ∈ {f, Fk}

10 / 24

Proof by Reduction (in Picture)

D gets back t1 = O(m1)

10 / 24

Proof by Reduction (in Picture)

D forwards t1 = O(m1) to A. From the perspective of A, t1
is the tag of m1

10 / 24

Proof by Reduction (in Picture)

10 / 24

Proof by Reduction (in Picture)

10 / 24

Proof by Reduction (in Picture)

10 / 24

Proof by Reduction (in Picture)

10 / 24

Proof by Reduction (in Picture)

10 / 24

Proof by Reduction (in Picture)

A outputs its forgery (m, t): m /∈ {m1,m2 . . .}, t – tag for m

10 / 24

Proof by Reduction (in Picture)

D forwards m to the oracle O ∈ {f, Fk}

10 / 24

Proof by Reduction (in Picture)

D gets back t∗ = O(m)

10 / 24

Proof by Reduction (in Picture)

If t∗ = t =⇒ D outputs 1; otherwise 0;

10 / 24

Proof by Reduction

The Simulation

D simulates ForgeA,Π(n) for A with f–RF or f–PRF:

1. A submits mi : i = 1, 2 . . . to the MAC O
2. D simulates the interaction with the MAC O for A:

▶ D forwards mi to f ; receives ti = f(mi)
▶ D returns ti to A

3. A outputs (m, t); m /∈ {m1,m2, . . .}
4. D forwards m to f ; receives t∗ = f(m)

5. If t∗ = t =⇒ D outputs 1 (success); otherwise 0 (fail)

11 / 24

World 0: D with a Truly Random Function f

Df simulates ForgeA,Π(n) for A with truly random f

▶ By definition of RF observing f(m1), f(m2), . . . does not
reveal information on f(m) : m /∈ {m1,m2, . . .}

▶ Therefore

Pr[Df(·) = 1] = Pr[f(m) = t] = Pr[t∗ = t] = 2−n

where n = |m|

12 / 24

World 1: D with a Pseudoandom Function f = Fk

DFk simulates ForgeA,Π(n) for A with truly random Fk

▶ The view of A in this case is exactly as in the
ForgeA,Π(n) experiment

▶ Therefore

Pr[DFk(·) = 1] = Pr[ForgeA,Π(n) = 1]

13 / 24

The Reduction

Proof.

By the assumption that F is a PRF ∃ϵ(n) = negl:

|Prk←{0,1}n [D
Fk(·) = 1]− Prf←Fn [D

f(·) = 1]| ≤ ϵ(n)

By the simulation of ForgeA,Π(n) by Df with RF:

Prf←Fn[D
f(·) = 1] = Pr[f(m) = t] = 2−n

By the simulation of ForgeA,Π(n) by DFk with PRF:

Prk←{0,1}n[D
Fk(·) = 1] = Pr[ForgeA,Π(n) = 1]

Therefore

Pr[ForgeA,Π(n) = 1] ≤ ϵ(n) + 2−n = negl(n)

=⇒ Π is a secure MAC

14 / 24

Limitations of the MAC Π

▶ Block ciphers (i.e. PRFs) have short, fixed-length block size

▶ e.g. AES has a 128-bit block size (shorter than a tweet!)

▶ Therefore Π is limited to authenticating only short,
fixed-length messages

▶ In practise we want to be able to send messages much
longer than 128 bits

▶ We also want to be able to send messages of different
(i.e. not fixed) length

▶ A solution: CBC-MAC (next)

15 / 24

Variable-length MAC

Suggestion

Can you construct a secure MAC for variable-length messages
from a MAC for fixed-length messages?

Idea

Mac′k(m1 . . .ml) = Mack(m1) . . .Mack(ml)

Vrfy′k(m1 . . .ml, t1 . . . tl) = 1 ⇐⇒ ∀i : Vrfyk(mi, ti) = 1

Is this secure?

16 / 24

A Construction

Probem

Need to prevent (at least):

▶ Block reordering

▶ Truncation

▶ Mixing-and-matching blocks from multiple messages

One solution

Mac′k(m1 . . .ml) = r,Mack(r|l|1|m1),Mack(r|l|2|m2), . . .

Not very efficient – can we do better? Yes: CBC-MAC.

17 / 24

Basic CBC-MAC

18 / 24

CBC-MAC vs. CBC-mode

▶ CBC-MAC is deterministic (no IV)
▶ MACs do not need to be randomized to be secure
▶ Verification is done by re-computing the result

▶ In CBC-MAC, only the final value is output

▶ Both are essential for security

19 / 24

Security of Basic CBC-MAC

Theorem

If F is a length-preserving PRF with input length n, then for
any fixed l basic CBC-MAC is a secure MAC for messages of
length ln

Proof

By reduction (omitted)

Note

▶ The sender and receiver must agree on the length
parameter l in advance

▶ Basic CBC-MAC is not secure if this is not done!

20 / 24

CBC-MAC for Variable Length Messages

Method 1

Prepend the message with its block length l

Method 2

▶ Apply Fk to the block length l to obtain key kl

▶ Compute the tag with Basic CBC-MAC and key kl

▶ Send (t, l)

Method 3

▶ Choose two keys k1 ← {0, 1}n, k2 ← {0, 1}n

▶ Compute t1 with Basic CBC-MAC using key k1

▶ Compute final tag using k2 as t = Fk2(t1)

21 / 24

CBC-MAC for Variable Length Messages: Method 1

Prepend the message with its block length l

22 / 24

Hash Functions

Hash functions

Another way for constructing MACs for variable length
messages

=⇒ next lecture

23 / 24

End

References: Sec. 4.3 (not Theorem 4.8) and Sec 4.4.1

24 / 24

