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Modular Arithmetic

> let a,b, N € Z with N > 1. We use the notation a mod N to
denote the remainder of a upon division by N.
> We say that a and b are congruent modulo N, written

a = bmod N, if they have the same remainder when divided
by N. Note that a = b mod N if and only if N|(a— b).



Modular Arithmetic

» Congruence modulo N obeys the standard rules of arithmetic
with respect to addition and multiplication: if a = & mod N
and b= b mod N, then (a+ b) = (& + b') mod N and
ab= a'b mod N.

» Example: compute (1093028 - 190301) mod 100. Since
1093028 = 28 mod 100 and 190301 = 1 mod 100, we have

1093028 - 190301 = 28 - 1 = mod 100 .



Modular Arithmetic

» Congruence modulo N does not respect (in general) division.
For this reason, ab = cb mod N does not necessarily imply
that a = cmod N.

» Example: N=24. Then 3-2 =6 =152 mod 24, but
3 # 15 mod 24.



Modular Arithmetic

> If for a given integer b there exists an integer ¢ such that
bc =1 mod N, we say that b is invertible modulo N and call ¢
a multiplicative inverse of b modulo M.

» cmod N is the unique multiplicative inverse of b that lies in
the range {1,..., N — 1} and is denoted by b~

» When b is invertible modulo N, we define division by b as
multiplication by b~ 1.

» If ab= cbmod N and b is invertible, then we have that

(ab)-b~' = (cb) - b' mod N= a= cmod N.



Modular Arithmetic

Which numbers are invertible modulo N?



Modular Arithmetic

Which numbers are invertible modulo N?

Theorem
Let b, N integers with b > 1 and N > 1. Then b is invertible
modulo N if and only if ged(b, N) = 1.



Groups

A group is a set G along with a binary operation o for which the
following conditions hold:
» Closure: Forall g,he G, gohe G.
» Existence of identity: There exists an identity element e € G
such that for all g€ G, eog=g=goe.
» Existence of inverse: For all g € G there exists an element
h € G such that goh=e= hog. Such an his called an
inverse of g.
» Associativity: For all g1, 82,43 € G,
(g1082) 083 =g10°(82083)
A group G with operation o is abelian if the following holds:

» Commutativity: For all ghe G, goh=hog.



Groups

» The inverse h of g € G is unique.

» Aset HC G is a subgroup of G if itself forms a group under
the same operation associated with G.

» If G has finite number of elements, we say it is finite. The
number of elements is called the order of G, denoted by |G|.



Examples

> The set of integers Z is an abelian group under addition with
identity 0. The set of the multiples of 2
{++,-6,—-4,-2,0,2,4,6,---} is a subgroup of Z.

» The set of non-zero real numbers R\ {0} is an abelian group
under multiplication with identity 1.

» The set {0,..., N — 1} with respect to addition modulo N is
an abelian group of order N with identity 0. The inverse of a
is (N — a)mod N. We denote this group by Zy.



Examples: the group Z},

The set of invertible elements modulo N is an abelian group under
multiplication with identity 1. Namely,

Zy & {be{1,...,N—1}|ged(b,N) =1} .

» Commutativity and associativity follow from the integers’
properties.

» Inverse of b: use extended Euclidean algorithm to find x, y
such that bx+ Ny = gcd(b, N) = 1. Then, xmod N is the
inverse of b modulo N.

» Closure: let a,b € Z},. Then (ab) mod N has inverse
(b~'a=') mod N, so ab € Zj,.



Examples: the group Zj;

Let N=15=5-3. The set of invertible elements modulo 15 is
{1,2,4,7,8,11,13,14}.

» The inverse of 2 is 8 since 2-8 = 16 = 1mod 15.

» The inverse of 4 is 4 since 4 -4 = 16 = 1mod 15.

» The inverse of 7 is 13 since 7-13 =91 = 1mod 15.

» The inverse of 11 is 14 since 11 - 14 = 151 = 1mod 15.



Examples: the group Z},

The set of invertible elements modulo N is an abelian group under
multiplication with identity 1. Namely,

Zy E{be{1,...,N=1}|ged(b,N) = 1} .

— Special case: for prime p, it holds that

75={1,2,....p—1}.



Multiplicative notation for groups

We use multiplicative notation - instead of o. We define

g'=¢g-8 .
——
m times

The familiar rules of exponentiation hold: g™ - g" = g™*™",
(g™)" = g™, gl =g, gﬂ = 1. If G is abelian, then
g"-hm=(g-hm



Theorem
Let G be a finite group with m = |G|, the order of the group.
Then for every element g€ G, g™ = 1.

Proof. We prove for G abelian. Fix arbitrary g € G and let
gi,--.,&m be the elements of G. We claim that

g1 &m=(g81) - (g8m) -

To see this, note that gg; = ggj = g 'ggi = g 'gg; = g = gj. So
each of the m elements in parentheses on the right-hand are
distinct. Because there are exactly m elements in G, the m
elements multiplied together on the right hand side are all the
elements in G in permuted order. Since G is abelian the order in
which elements are multiplied does not matter, so the right-hand
side and the left-hand side are equal.

Again using that G is abelian we obtain

g1 8m=(g81) - (ggm) =8"(g1- - gm) > &" =1.



Theorem
Let G be a finite group with m = |G|, the order of the group.
Then for every element g€ G, g™ = 1.




Theorem

Let G be a finite group with m = |G|, the order of the group.
Then for every element g€ G, g™ = 1.

Corollary
Let G be a finite group with m = |G| > 1. Then for every g€ G
and every integer x, we have g = g™odm.

Proof.

For some integers a, r, where r = xmod m, we have that
X=am-+r, so

g=gm =" g=1"¢g=4¢".



Definition
Let G be a finite group and g € G. The order of g is the smallest
positive integer i with g’ = 1.

Let i the order of g € G. We define the set (subgroup)

@ L8},



Cyclic groups

Definition
A finite group G of order m is cyclic if it can be generated by a
single element g € G (of order m), i.e.,

G=(g €{L,....e" "}

We say that g is a generator of G.

If gis a generator of G, then every element h € G is equal to g*
for some x € {0,...,m—1}.



Cyclic groups

Theorem

If G is a group of prime order p, then G is cyclic. Furthermore, all
elements of G except the identity are generators of G.

Theorem
If p is prime, then Z, is a cyclic group of order p — 1.



Example

Consider the cyclic group Z%. We have that (2) = {1,2,4} so 2 is
not a generator. However,

<3> = {1?37216747 5} = Z; )

so 3 is a generator of Zz.



The discrete logarithm problem

Let G denote a generic PPT group generation algorithm. G on
input 1" outputs a description of a cyclic group G, its order g
(with length of g, |g| = n) and a generator g € G.

Since G = (g) = {g°,...,g97 '}, for every h € G there is a unique
X € Zgq such that g* = h. We call x the discrete logarithm of h

with respect to g.



The discrete logarithm problem

Consider the following experiment for a group generation algorithm
G and an adversary A.
The discrete-logarithm experiment DLog, ¢(n):

1. Run G(1") to obtain (G, q, g).

2. Choose a uniform h € G.

3. Ais given (G, g, g, h) and outputs x € Zj.

4. Qutput 1 if g°= h, and 0 otherwise.
Definition
We say that the discrete logarithm problem is hard relative to G, if
for all PPT adversaries A, it holds that

Pr [DLogy g(n) = 1] < negl(n) .



The computational Diffie-Hellman problem

Consider the following experiment for a group generation algorithm
G and an adversary A.
The CDH experiment CDHy g(n):

1. Run §(1") to obtain (G, g, g).

2. Choose uniform x,y € Z, and compute g*, g”.

3. Ais given (G, q,g, g%, &) and outputs h € G.

4. Qutput 1 if h= g%, and 0 otherwise.
Definition
We say that the CDH problem is hard relative to G, if for all PPT
adversaries A, it holds that

Pr [CDHy g(n) = 1] < negl(n) .



The decisional Diffie-Hellman problem

Consider the following experiment for a group generation algorithm
G and an adversary A.

The DDH experiment DDHy g(n):
1. Run §(1") to obtain (G, g, g).
2. Choose uniform x,y, z € Zq.

Definition

We say that the DDH problem is hard relative to G, if for every
PPT adversary A, it holds that

PrAG.a.58¢.¢) = 1] ~Pr[AG.q.58¢¢%) = 1]| <

< negl(n) , where in each case the probabilities are taken over the
experiment DDH 4 g(n).



Relations between the problems

» Hardness of the CDH problem relative to G implies hardness
of the discrete-logarithm problem relative to G.

» Hardness of the DDH problem relative to G implies hardness
of the CDH problem relative to G.



Relations between the problems

Via reduction, we can show that

> If there is an algorithm that solves discrete-logarithm problem
relative to G (with some probability), then we can construct
an algorithm for solving the CDH problem relative to G.

» If there is an algorithm that solves CDH problem relative to G,
then we can construct an algorithm that solves the DDH
problem relative to G (i.e., distinguishes g from a uniform

element g7 € G).

Exercise!



Groups with DLog/CDH/DDH hardness

> Large prime order subgroups of Zy, where p prime, are
believed to be safe.

Theorem
Let p=rq+ 1, where p,q prime. Then

G = {hmodp | h e 75}

is a subgroup of Zj, of order q.

We usually select r= 2, i.e., we choose p, g primes such that
p=2q+1.



End

References: Sec 8.1.1, 8.1.2, 8.1.3, 8.1.4, 8.3.1, 8.3.2, 8.3.3 (only
the proofs in slides).



