
Random Oracles and Digital Signatures

Michele Ciampi

Introduction to Modern Cryptography, Lecture 16

Random Oracles

▶ A random oracle is a function that produces a random looking
output for each query it receives.

▶ It must be consistent: if a question is repeated, the random
oracle must return the same answer.

▶ Useful when abstracting a hash function in cryptographic
applications.

▶ If a scheme is secure assuming the adversary views some hash
function as a random oracle, it is said to be secure in the
Random Oracle Model.

Random Oracles

▶ Given query M s.t. (M, ·) /∈ History, choose t
$← Y and add

(M, t) to History. Return t.
▶ Given query M s.t. (M, t) ∈ History for some t, return t.

Figure: Hash function H : {0, 1}∗ −→ Y modelled as a random oracle.

Random Oracles

▶ A scheme is designed and proven secure in the random-oracle
model.

▶ In the real world, a random oracle is not available. Instead,
the RO is instantiated with a hash function Ĥ

Random Oracles

▶ If x has not been queried to H, then the value of H(x) is
uniform.

▶ If A queries x to H, the reduction can see this query and
learn x. (Observability.)

▶ The reduction can set the value of H(x) (i.e., the response to
query x) to a value of its choice, as long as this value is
correctly distributed, i.e., uniform. (Programmability.)

Objections to the RO model

▶ Ĥ cannot possibly be random (or even pseudorandom) since
the adversary learns the description of Ĥ. Hence, the value of
that function on all inputs is immediately determined.

▶ Given that the description of Ĥ is given to the adversary, the
adversary can query Ĥ locally. How can a reduction see the
queries that the adversary makes, or program it?

▶ We do not have a clear idea of what it means for a concrete
hash function to be “sufficiently good”.

Support for the RO model

Why using the RO at all given all these problems?
▶ Efficient schemes
▶ A proof of security in the random-oracle model is significantly

better than no proof at all.
▶ A proof of security for a scheme in the random-oracle model

indicates that the scheme’s design is “sound”. If there is a
problem is only because the hash fuction is not good enough.

▶ There have been no successful real-world attacks on schemes
proven secure in the random-oracle model.

Digital signatures

▶ Digital signatures are technologically equivalent to
hand-written signatures.

▶ A signer S has a unique private signing key and publishes the
corresponding public verification key.

▶ S signs a message M and everyone who knows the public key
can verify that M originated from the signer S.

Syntax

A digital signature scheme is a triple of algorithms as follows:
▶ The key generation algorithm Gen(1n) that outputs a signing

(private) key sk and a verification (public) key vk.
▶ The signing algorithm Sign(sk,M) that outputs a signature σ

on message M .
▶ The verification algorithm Verify(vk,M, σ) that outputs 1 if σ

is valid and 0, otherwise.

Properties

▶ Correctness: For any message M in message space M, it
holds that

Pr
[
Verify(vk,

(sk,vk)←Gen(1n)
M, Sign(sk,M)) = 1

]
≥ 1− negl(n) .

▶ Unforgeability: There exists no PPT adversary that can
produce a valid message- signature pair without receiving it
from external sources.

A formal definition of unforgeability

▶ Gen(1n) is run to obtain keys (vk, sk).
▶ The adversary A is given vk and access to an oracle Sign(sk, ·).

The adversary outputs a pair (M,σ). Let Q denote the set of
queries that A asked the oracle.

▶ A succeeds iff Verify(vk,M, σ) = 1 and M /∈ Q. In this case,
output 1. Else, output 0.

Figure: The game GameA
Sign

EUF−CMA.

We say that the digital signature scheme (Gen, Sign,Verify) has
existential unforgeability under adaptive chosen message attacks
(EUF-CMA) if for every PPT adversary A, it holds that

Pr
[
GameASign

EUF−CMA(1
n) = 1

]
≤ negl(n) .

Trapdoor One-Way Functions

A trapdoor one-way function (TOWF) fe : Xe −→ Ye with
parameters (e, z)← GenTOWF(1

n) is a function that satisfies the
following:
▶ Easy to compute: there exists a PPT algorithm that on input

x returns fe(x).
▶ Hard to invert: for every PPT adversary A

Pr
[
x

$← Xe;A(e, fe(x)) ∈ f−1e (fe(x))
]
≤ negl(n) .

▶ Easy to invert with trapdoor: There exists PPT algorithm T

such that
T(e, z, fe(x)) ∈ f−1e (fe(x)) .

Digital signatures from trapdoor one-way functions

Let H : {0, 1}∗ −→ Ye be a (collision resistant) hash function and
fe : Xe −→ Ye be a TOWF with parameter generation algorithm
GTOWF and trapdoor algorithm T. We define the following
signature scheme:

▶ Gen(1n): (e, z)← GenTOWF(1
n). Output vk := e and

sk := (e, z).
▶ Sign(sk,M): h← H(M); σ ← T(e, z, h).
▶ Verify(vk,M, σ): If fe(σ) = H(M) output 1. Else, output 0.

Figure: Digital signatures from trapdoor one-way functions.

Correctness

For any message M , we have that h← H(M) and σ ← T(e, z, h),
so σ ∈ f−1e (h) = f−1e (H(M)). Therefore,

fe(σ) = H(M) .

Unforgeability

Theorem
Suppose that fe : Xe −→ Ye is bijective and H : {0, 1}∗ −→ Ye is
a random oracle. Suppose that |Ye| ≥ 2n. Then for every PPT
adversary A that breaks the EUF-CMA security of
(Gen, Sign,Verify) with probability α, i.e.,

Pr
[
GameASign

EUF−CMA(1
n) = 1

]
= α ,

there exists a PPT adversary B that breaks the one-way property
of fe, i.e.,

Pr
[
x

$← Xe;B(e, fe(x)) = x
]
≥ 1

qH

(
α− 1

2n

)
,

where qH is the number of queries A makes to the random oracle
H.

Proof of EUF-CMA security

▶ Let (e, z)← GenTOWF(1
n), x $← Xe and y = fe(x). Since fe

is a bijection, B is given (e, y) and its goal is to find
x = f−1e (y).

▶ The adversary B must simulate the oracles H and Sign to use
adversary A.

Proof of EUF-CMA security

Figure: The adversary B must simulate H and Sign to use adversary A.

Proof of EUF-CMA security

▶ First, suppose that A makes no signing queries, so it produces
(M∗, σ∗) after making qH queries to the random oracle.

▶ B will simulate the random oracle by plugging in y into the
oracle’s responses.

Choose j
$← {1, 2, . . . , qH}.

▶ Given query M s.t. (M, ·) /∈ History: if this is the jth query, set
t = y, else choose t

$← Ye. Add (M, t) to History. Return t.
▶ Given query M s.t. (M, t) ∈ History for some t, return t.

Figure: Modified random oracle simulation by B.

Proof of EUF-CMA security

Let E be the event that (M∗, ·) ∈ History, i.e. A asks M∗ to H.
Then,

Pr
[
A succeeds

∣∣¬E]
≤ 1

|Ye|
≤ 1

2n
.

This is the case since given the event ¬E, the adversary has not
asked M∗ to H and thus the value of H(M∗) is undetermined
until the final step of B takes place. Thus,
Pr

[
fe(σ

∗) = H(M∗)
∣∣¬E]

= 1
|Ye| ≤

1
2n .

Consequently,

Pr
[
A succeeds ∧ E

]
= Pr

[
A succeeds

]
− Pr

[
A succeeds ∧ ¬E

]
≥

≥ Pr
[
A succeeds

]
− Pr

[
A succeeds

∣∣¬E]
≥

≥ α− 1

2n
.

Proof of EUF-CMA security
Given event E, let G be the event that the random oracle
simulation will guess correctly the query that M∗ is asked. We
have that Pr[G|E] = 1

qH
.

If G occurs, then H(M∗) = y. If additionally A succeeds, then
fe(σ

∗) = H(M∗) = y, i.e., σ∗ is a preimage of y! So, B succeeds
by returning σ∗ = x.
Due to the independence of G and the success of A in the
conditional space E, we have that

Pr
[
B succeeds

]
≥ Pr

[
B succeeds

∣∣E]
· Pr[E] ≥

≥ Pr
[
A succeeds ∧G

∣∣E]
· Pr[E] =

= Pr
[
A succeeds

∣∣E]
· Pr[G|E] · Pr[E] =

= Pr
[
A succeeds ∧ E

]
· Pr[G|E] ≥

≥ 1

qH

(
α− 1

2n

)
.

Proof of EUF-CMA security
Given event E, let G be the event that the random oracle
simulation will guess correctly the query that M∗ is asked. We
have that Pr[G|E] = 1

qH
.

If G occurs, then H(M∗) = y. If additionally A succeeds, then
fe(σ

∗) = H(M∗) = y, i.e., σ∗ is a preimage of y! So, B succeeds
by returning σ∗ = x.
Due to the independence of G and the success of A in the
conditional space E, we have that

Pr
[
B succeeds

]
≥ Pr

[
B succeeds

∣∣E]
· Pr[E] ≥

≥ Pr
[
A succeeds ∧G

∣∣E]
· Pr[E] =

= Pr
[
A succeeds

∣∣E]
· Pr[G|E] · Pr[E] =

= Pr
[
A succeeds ∧ E

]
· Pr[G|E] ≥

≥ 1

qH

(
α− 1

2n

)
.

Proof of EUF-CMA security

Consider the general case where A makes (polynomially many)
queries to the signing oracle. B must answer in a way that is
consistent with the random oracle queries.

Choose j
$← {1, 2, . . . , qH}.

▶ Given query M s.t. (M, ·, ·) /∈ History: if this is the jth query,
set t = y, ρ = ⊥. Else, choose ρ

$← Xe and set t = fe(ρ). Add
(M, t, ρ) to History. Return t.

▶ Given query M s.t. (M, t, ρ) ∈ History for some t, return t.

Figure: A second modified random oracle simulation as used by algorithm
B to “plug-in” a challenge y into the oracle’s responses while keeping the
“pre-images” of the oracles responses under the map fe.

Proof of EUF-CMA security

▶ When asked to sign M , B can first ask its random oracle for
M and look for (M, t, ρ) in History and, unless ρ = ⊥,
proceed to answer the query with ρ. By construction,
fe(ρ) = t = H(M), so ρ is valid.

▶ The case ρ = ⊥ means that the guess of B for j is mistaken
(due to the condition that a successful forgery must be on a
message that A does not query to the signing oracle) and
thus the simulation of B will fail. We call this event F .

▶ It holds that (A succeeds) ∩G ∩ F = ∅.

Proof of EUF-CMA security

As previously, we have that

Pr
[
A succeeds ∧ E

]
≥ α− 1

2n

In addition, since (A succeeds) ∩G ∩ F = ∅, it holds that

Pr
[
A succeeds ∧G ∧ E ∧ ¬F

]
= Pr

[
A succeeds ∧G ∧ E

]
.

Proof of EUF-CMA security

Therefore, we get that

Pr
[
B succeeds

]
≥ Pr

[
A succeeds ∧G ∧ E ∧ ¬F

]
=

= Pr
[
A succeeds ∧G ∧ E

]
=

= Pr
[
A succeeds ∧G

∣∣E]
· Pr[E] =

= Pr
[
A succeeds

∣∣E]
· Pr[G|E] · Pr[E] =

= Pr
[
A succeeds ∧ E

]
· Pr[G|E] ≥

≥ 1

qH

(
α− 1

2n

)
.

Proof of EUF-CMA security

The modified random oracle that B manages is indistinguishable
from an original random oracle.
▶ Since fe(·) is a bijection, fe(ρ) = t is uniformly distributed

over Ye when ρ is uniformly distributed over Xe.
▶ As for the jth query, recall that the input y of B is uniformly

distributed over Ye (since y = fe(x) and x
$← Xe).

Instantiation: RSA full-domain hash signatures

▶ Gen: On input 1n choose two n-bit random primes p and q.
Compute N = pq and ϕ(N) = (p− 1)(q − 1). Choose e > 1
such that gcd(e, ϕ(N)) = 1. Compute d := e−1 mod ϕ(N).
Return (N, e) as the verification key and (N, d) as the signing
key. A full-domain hash function H is available to all parties.

▶ Sign: on input a signing key (N, d) and a message M , output
the digital signature

σ = H(M)d mod N .

▶ Verify: on input a verification key (N, e) and (M,σ), verify that
σe = H(M) mod N . If equality holds, the result is True;
otherwise, the result is False.

Figure: RSA-FDH signatures.

End

References: -From Introduction to Modern Cryptography: Sec. 5.5
(this is a discussion on the random oracle model). -From Prof.
Kiayias’s lecture notes: Section 7 (pages 42-46), Section 7 (pages
45-47).

