Random Oracles and Digital Signatures

Michele Ciampi

Introduction to Modern Cryptography, Lecture 16

Random Oracles

>

>

A random oracle is a function that produces a random looking
output for each query it receives.

It must be consistent: if a question is repeated, the random
oracle must return the same answer.

Useful when abstracting a hash function in cryptographic
applications.

If a scheme is secure assuming the adversary views some hash
function as a random oracle, it is said to be secure in the
Random Oracle Model.

Random Oracles

> Given query M s.t. (M,-) ¢ History, choose t & Y and add
(M,t) to History. Return ¢.

> Given query M s.t. (M,t) € History for some ¢, return ¢.

Figure: Hash function H : {0,1}* — Y modelled as a random oracle.

Random Oracles

» A scheme is designed and proven secure in the random-oracle
model.

» |n the real world, a random oracle is not available. Instead,
the RO is instantiated with a hash function H

Random Oracles

» If 2 has not been queried to H, then the value of H(x) is
uniform.

> If A queries x to H, the reduction can see this query and
learn . (Observability.)

» The reduction can set the value of H(x) (i.e., the response to

query x) to a value of its choice, as long as this value is
correctly distributed, i.e., uniform. (Programmability.)

Objections to the RO model

» H cannot possibly be random (or even pseudorandom) since
the adversary learns the description of H. Hence, the value of
that function on all inputs is immediately determined.

> Given that the description of H is given to the adversary, the
adversary can query H locally. How can a reduction see the
queries that the adversary makes, or program it?

» We do not have a clear idea of what it means for a concrete
hash function to be “sufficiently good".

Support for the RO model

Why using the RO at all given all these problems?
> Efficient schemes

» A proof of security in the random-oracle model is significantly
better than no proof at all.

» A proof of security for a scheme in the random-oracle model
indicates that the scheme’s design is “sound”. If there is a
problem is only because the hash fuction is not good enough.

» There have been no successful real-world attacks on schemes
proven secure in the random-oracle model.

Digital signatures

» Digital signatures are technologically equivalent to
hand-written signatures.

» A signer S has a unique private signing key and publishes the
corresponding public verification key.

» S signs a message M and everyone who knows the public key
can verify that M originated from the signer S.

Syntax

A digital signature scheme is a triple of algorithms as follows:
» The key generation algorithm Gen(1™) that outputs a signing
(private) key sk and a verification (public) key vk.
» The signing algorithm Sign(sk, M) that outputs a signature o
on message M.

» The verification algorithm Verify(vk, M, o) that outputs 1 if o
is valid and 0, otherwise.

Properties

» Correctness: For any message M in message space M, it
holds that

Pr [Verify(vk,M, Sign(sk, M)) = 1] > 1 — negl(n) .
(sk,vk)+Gen(1™)

» Unforgeability: There exists no PPT adversary that can
produce a valid message- signature pair without receiving it
from external sources.

A formal definition of unforgeability

» Gen(1™) is run to obtain keys (vk, sk).

» The adversary A is given vk and access to an oracle Sign(sk, -).
The adversary outputs a pair (M, o). Let Q denote the set of
queries that A asked the oracle.

> A succeeds iff Verify(vk, M,c) =1 and M ¢ Q. In this case,
output 1. Else, output 0.

. Sign
Figure: The game GamegUpfcMA.

We say that the digital signature scheme (Gen, Sign, Verify) has
existential unforgeability under adaptive chosen message attacks
(EUF-CMA) if for every PPT adversary A, it holds that

Sign

Pr [GameéUchMA(ln) = 1] < negl(n) .

Trapdoor One-Way Functions

A trapdoor one-way function (TOWF) f : X — Y. with
parameters (e, z) < Gentowr(1™) is a function that satisfies the
following:

» FEasy to compute: there exists a PPT algorithm that on input
x returns fo(x).

» Hard to invert: for every PPT adversary A

Pr [z & Xes Ale, fe(2)) € 71 (fe(2))] < negl(n) .

» FEasy to invert with trapdoor: There exists PPT algorithm T
such that

T(e, z, fe(x)) € fe_l(fe(x)) .

Digital signatures from trapdoor one-way functions

Let H : {0,1}* — Y. be a (collision resistant) hash function and
fe: Xe — Y, be a TOWF with parameter generation algorithm
Gtowr and trapdoor algorithm T. We define the following
signature scheme:

> Gen(1"): (e, z) + Gentowe(1™). Output vk := e and
sk = (e, 2).

» Sign(sk,M): h< H(M); o < T(e,z,h).
> Verify(vk, M,0): If f.(c) = H(M) output 1. Else, output 0.

Figure: Digital signatures from trapdoor one-way functions.

Correctness

For any message M, we have that h <— H(M) and o < T(e, z, h),
so o € fl(h) = oL (H(M)). Therefore,

e

Unforgeability

Theorem

Suppose that f. : X, — Y, is bijective and H : {0,1}* — Y, is
a random oracle. Suppose that |Y.| > 2". Then for every PPT
adversary A that breaks the EUF-CMA security of

(Gen, Sign, Verify) with probability «, i.e.,

Pr [Gameé;i;_CMA(l”) = 1] =,

there exists a PPT adversary B that breaks the one-way property
of fe, i.e.,

Priz & XeBle, fla) =] > ——(a— o) |

where qg is the number of queries A makes to the random oracle
H.

Proof of EUF-CMA security

> Let (e, z) < Gentowr(1"), = & Xe and y = fe(x). Since f.
is a bijection, B is given (e, y) and its goal is to find
z=fo'(y).

» The adversary B must simulate the oracles H and Sign to use
adversary A.

Proof of EUF-CMA security

Figure: The adversary B must simulate H and Sign to use adversary A.

Proof of EUF-CMA security

P First, suppose that A makes no signing queries, so it produces
(M*,0*) after making gz queries to the random oracle.

» B will simulate the random oracle by plugging in y into the
oracle’s responses.

Choose j & {1,2,...,q1}
> Given query M s.t. (M,-) ¢ History: if this is the jth query, set

t =y, else choose ¢ & Y.. Add (M, t) to History. Return ¢.

> Given query M s.t. (M,t) € History for some ¢, return ¢.

Figure: Modified random oracle simulation by B.

Proof of EUF-CMA security

Let E be the event that (M™*,-) € History, i.e. A asks M* to H.

Then,
1 1

Yo =2

This is the case since given the event —F, the adversary has not
asked M* to H and thus the value of H(M™) is undetermined
until the final step of B takes pIace Thus,

Pr[fo(o™) = H(M*) [<E] = 3 < 3+ .

Consequently,

Pr [A succeeds ‘ﬂE]

Pr [A succeeds A E] = Pr [A succeeds] — Pr [A succeeds A ~E] >

> Pr [A succeeds] — Pr [A succeeds ‘ﬁE} >

1
>oa— —.
2’!’L

Proof of EUF-CMA security

Given event F, let G be the event that the random oracle
simulation will guess correctly the query that M* is asked. We
have that Pr[G|E] = -

qH "’

Proof of EUF-CMA security

Given event F, let G be the event that the random oracle
simulation will guess correctly the query that M* is asked. We
have that Pr[G|E] = —

If G occurs, then H(M*) = y If additionally A succeeds, then
fe(o®) = (M*) =1y, i.e,, 0¥ is a preimage of y! So, B succeeds
by returning o* = .

Due to the independence of G and the success of A in the
conditional space FE, we have that

Pr [B succeeds| > Pr [B succeeds|E| - Pr[E] >
> Pr [A succeeds A G|E] - Pr[E] =
= Pr [A succeeds| E] - Pr[G|E] - Pr[E] =
= Pr [A succeeds A E| - Pr[G|E] >

1 1
RN
qu 2n

Proof of EUF-CMA security

Consider the general case where A makes (polynomially many)
queries to the signing oracle. B must answer in a way that is
consistent with the random oracle queries.

Choose j & {1,2,...,q1}.
> Given query M s.t. (M,-,-) ¢ History: if this is the jth query,

sett =y, p= L. Else, choose p & X and set t = fe(p). Add
(M,t, p) to History. Return t.

> Given query M s.t. (M,t,p) € History for some t, return t.

Figure: A second modified random oracle simulation as used by algorithm
B to "plug-in” a challenge y into the oracle’s responses while keeping the
“pre-images” of the oracles responses under the map f..

Proof of EUF-CMA security

» When asked to sign M, B can first ask its random oracle for
M and look for (M,t, p) in History and, unless p = L,
proceed to answer the query with p. By construction,
fe(p) =t =H(M), so pis valid.

» The case p = 1 means that the guess of B for j is mistaken
(due to the condition that a successful forgery must be on a
message that A does not query to the signing oracle) and
thus the simulation of B will fail. We call this event F.

» It holds that (A succeeds) NG N F = 0.

Proof of EUF-CMA security

As previously, we have that

1
Pr [A succeeds A E] > o — —
27’L

In addition, since (A succeeds) NG N F =), it holds that

Pr [A succeeds A G A E N —|F} =Pr [A succeeds A G A E} .

Proof of EUF-CMA security

Therefore, we get that

Pr [B succeeds| > Pr [A succeeds AG A EA—F| =
= Pr [A succeeds A G A E| =
= Pr [A succeeds A G‘E} -Pr[E] =
=Pr[A succeeds’E] -Pr[G|E] - Pr[E] =
= Pr [A succeeds A E| - Pr[G|E] >

> (o 5)
—(a—=—) .
T qH 2m

Proof of EUF-CMA security

The modified random oracle that B manages is indistinguishable
from an original random oracle.

» Since f(-) is a bijection, fe(p) =t is uniformly distributed
over Y, when p is uniformly distributed over X.

» As for the jth query, recall that the input y of B is uniformly
distributed over Y, (since y = fe(z) and x & Xe).
L]

Instantiation: RSA full-domain hash signatures

» Gen: On input 1™ choose two n-bit random primes p and q.
Compute N =pg and ¢(N) = (p —1)(¢ — 1). Choose e > 1
such that ged(e, #(N)) = 1. Compute d := e~ mod ¢(N).
Return (N, e) as the verification key and (N, d) as the signing
key. A full-domain hash function H is available to all parties.

> Sign: on input a signing key (N, d) and a message M, output
the digital signature
o=H(M)mod N .

> Verify: on input a verification key (N, e) and (M, o), verify that
0¢ = H(M) mod N. If equality holds, the result is True;
otherwise, the result is False.

Figure: RSA-FDH signatures.

End

References: -From Introduction to Modern Cryptography: Sec. 5.5
(this is a discussion on the random oracle model). -From Prof.
Kiayias's lecture notes: Section 7 (pages 42-46), Section 7 (pages
45-47).

