Introduction to Algorithms and
Data Structures

Heap Operations and Priority Queues

Last lecture

e Max Heap data structure
e QOperations:

e Max-Heapify

e Bulid-Max-Heap

e Using these, we presented Heapsort, a sorting algorithm
with worst-case running time O(n Ig n).

This lecture

e More Max Heap operations:
e Max-Heap-Extract-Max(A)
e Max-Heap-Insert(A, v)

e Using Heaps to implement Priority Queues

Heap operations

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Extract-Max(A):

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

Max-Heap-Extract-Max(A):

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

e How can we do this?

Heapsort

HEAPSORT (A, n)

1 BUILD-MAX-HEAP(A,n)

2 fori = n downto 2

3 exchange A[l] with A[i]

4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (4, 1)

CLRS pp 170

Heapsort

HEAPSORT (A, n)

1 BUILD-MAX-HEAP(A,n)

2 fori = n downto 2

3 exchange A[l] with A[i]

4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (4, 1)

CLRS pp 170

Heapsort

HEAPSORT (A, n)

1 BUILD-MAX-HEAP(A,n)

2 fori = n downto 2

3 exchange A[l] with A[i]

4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (4, 1)

CLRS pp 170

10

Heapsort

16

HEAPSORT (A, n)

1 BUILD-MAX-HEAP(A,n)

2 fori = n downto 2

3 exchange A[l] with A[i]

4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (4, 1)

CLRS pp 170

Heapsort

16

HEAPSORT (A, n)

1 BUILD-MAX-HEAP(A,n)

2 fori = n downto 2

3 exchange A[l] with A[i]

4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (4, 1)

CLRS pp 170

Max-Heap-Extract-Max(A):

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

e How can we do this?

Max-Heap-Extract-Max (A)

1 max = A[1]

2 A[l]=AJA.heap-size]

3 A.heap-size = A.heap-size — 1
4 Max-Heapify(A,1)
3}

return max

Max-Heap-Extract-Max(A):

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

e How can we do this?
Max-Heap-Extract-Max (A)

1 max = A[1]
All] =A[A . heap-size]

Running time?

2

3 A.heap-size = A.heap-size — 1
4 Max-Heapify(A,1)
3}

return max

Max-Heap-Extract-Max(A):

e Max-Heap-Extract-Max(A):
Extract and return the maximum element of the heap, and
also remove it from the heap.

e How can we do this?
Max-Heap-Extract-Max (A)

1 max = A[1]
All] =A[A . heap-size]

Running time?

2
3 A.heap-size = A.heap-size — 1
4 Max-Heapify(A,1) Ogn)
S5 return max

Max-Heap-Insert(A, v)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert (A,15)

Max-Heap-Insert (A,15)

Where should we add 15?

Max-Heap-Insert (A,15)

1

Where should we add 15?

Max-Heap-Insert (A,15)

Where should we add 15?

Max-Heap-Insert (A,15)

1

Where should we add 15?

The value of a node is at most the value
of its parent, i.e., A[Parent(i)] > A[i].

Max-Heap-Insert (A,15)

1

16_ Where should we add 157

~$ Problem!

The value of a node is at most the value
of its parent, i.e., A[Parent(i)] > A[i].

Fixing the problem

Fixing the problem

e How do we fix a tree that is “almost” a heap back to

being a heap?

Fixing the problem

e How do we fix a tree that is “almost” a heap back to

being a heap?

MAX-HEAPIFY (A4,1)

O 0 1 O Ui & W N =

[
-

[= LEFT(Q)

r = RIGHT(i)

if | < A.heap-size and A[l] > Ali]
largest = |

else largest = i

if r < A.heap-size and A[r| > A[largest]
largest = r

if largest # i
exchange A[i] with A[largest]
MAX-HEAPIFY (A, largest)

CLRS pp 165

Max-Heap-Insert (A,15)

1

16_ Can we use Max-Heapify here?

~$ Problem!

The value of a node is at most the value
of its parent, i.e., A[Parent(i)] > A[i].

Max-Heap-Insert (A,15)

16_ Can we use Max-Heapify here?

The value o
of its parent 1o

1
2
3
4
5
6
7
8
9

MAX-HEAPIFY (A, i)

[= LEFT(i)

r = RIGHT(i)

if [< A.heap-size and A[l] > Ali]
largest = |

else largest = i

if r < A.heap-size and A[r] > A[largest]
largest = r

if largest # i
exchange A[i] with A[largest|
MAX-HEAPIFY (A, largest)

Max-Heap-Insert (A,15)

1
16 } . Can we use Max-Heapify here?
2 \ '- - 0
'ﬂ 14 MAX-HEAPIFY (A, 1)
1 | = LEFT(i)
57 2 r = RIGHT(i)
4§ 8 3 3 if | < A.heap-size and A[l] > Ali]
N ¢ 4 largest = |
5 else largest = i
| 6 if r < A.heap-size and A[r] > Al[largest]
) '_ B 7 largest = r
2 4§ ¥ The value o 8 iflargest #i
L § . 9 exchange A[i] with A[largest]
8 9 ' of its parent o MAX-HEAPIFY (4, largest)

Max-Heap-Insert (A,15)

1
16 } . Can we use Max-Heapify here?
2 \ '- - o
L 15 } MAX-HEAPIFY (4, i)
- 1 [= LEFT(i)
57 2 r = RIGHT(i)
4§ 8 3 3 if | < A.heap-size and A[l] > Ali]
N ¢ 4 largest = |
5 else largest = i
| 6 ifr < A.heap-size and A[r] > Allargest|
. F Ty 7 largest = r
2 4§ ¥ The value o 8 iflargest #i
L § . 9 exchange A[i] with A[largest]
8 9 ' of its parent o MAX-HEAPIFY (4, largest)

Max-Heapify-Up(A,11):

1

(14

Max-Heapify-Up (A, i)
1 if i > 1 then

2 j = Parent(i)

3 ifAli] > AlJ] then

4 exchange A[i] with A[J]
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

14

Max-Heapify-Up (A, i)
1 if i > 1 then

2 j = Parent(i)

3 ifAli] > AlJ] then

4 exchange A[i] with A[J]
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

14

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i)

3 ifAli] > AlJ] then

4 exchange A[i] with A[J]
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

(14}

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > AlJ] then

4 exchange A[i] with A[J]
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

(14}

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > Alj] then true

4 exchange A[i] with A[J]
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

(14}

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > Alj] then true

4 exchange A[i] with A[j]—
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > Alj] then true

4 exchange A[i] with A[j]—
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

Max-Heapify-Up (A, i)

1 if i > 1 then true

J = Parent(i) -+

if A[1] > A[J] then true
exchange A[i] with A[j]—
Max-Heapify-Up (A, j)

2
3
4
)

Max-Heapify-Up(A,11):

1

+{
Max-Heapify-Up (A, i)
1 if i > 1 then true

J = Parent(i) -+

if A[1] > A[J] then true
exchange A[i] with A[j]—
Max-Heapify-Up (A, j)

2
3
4
)

Max-Heapify-Up(A,11):

1

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > Alj] then true

4~ exchange Ali] with A[j]—
5 Max-Heapify-Up (A, j)

Max-Heapify-Up(A,11):

1

Max-Heapify-Up (A, i)
1 if i > 1 then true

2 j = Parent(i) —»

3 ifAli] > Alj] then true

4 exchange A[i] with A[j]—
5 Max-Heapify-Up (A, j)

Max-Heap-Insert(A, v)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert(A, v)

1 A.heap-size = A.heap-size + 1
2 AlA.heap-size] = v

3 i = A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

16)

Max-Heap-Insert(A, v)
1 A.heap-size = A.heap-size + 1
L2 4 L4y Ly 2 Al|A.heap-size| = v
ry ry 3 i = A.heap-size
4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

Max-Heap-Insert(A, V)

1 A.heap-size = A.heap-size + 1
2 Al|A.heap-size| = v

3 i = A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

Max-Heap-Insert(A, V)

1 A.heap-size = A.heap-size + 1
2 Al|A.heap-size| = v

3 i = A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

Max-Heap-Insert(A, v)

1 11 A.heap-size = A.heap-size + 1
2 AlA.heap-size] = v

3 i = A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

Max-Heap-Insert(A, v)

1 11 A.heap-size = A.heap-size + 1
2 AlA.heap-size] =v A[ll]=15
3 i = A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

Max-Heap-Insert(A, v)

1 11 A.heap-size = A.heap-size + 1
2 AlA.heap-size] =v A[ll]=15
3 11 [= A.heap-size

4 Max-Heapify-Up (A, i)

Max-Heap-Insert (A,15)

1

16)

Max-Heap-Insert(A, v)
1 11 A.heap-size = A.heap-size + 1

' 2 A[A.heap-size] = v A[ll] =15
‘\\11 | = A.heap-size
Max-Heapify-Up (A, i)

Max-Heap-Insert(A, v)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert(A, v)

1 A.heap-size = A.heap-size + 1
2 AlA.heap-size] = v

3 i = A.heap-size

4 Max-Heapify-Up (A, 1)

Max-Heap-Insert(A, v)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert(4, v) What is the running time of

1 A.heap-size = A.heap-size + 1 Max-Heap-Insert?
A[A.heap-size] = v

2
3 1 = A.heap-size
4 Max-Heapify-Up (A, 1)

Max-Heap-Insert(A, v)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert(4, v) What is the running time of
1 A.heap-size = A.heap-size + 1 Max-Heap-Insert?

A[A.heap-size] = v
What is the running time of

2
3 1 = A.heap-size _
4 Max-Heapify-Up (A, 1) Max-Heapify-Up?

Max-Heapify running time

MAX-HEAPIFY(A,i) T(h)

What is the cost of an 1
. . 2
execution of Max-Heapify?
4

All “standard” operations Z
can be done in O(1) time. 7
8

9

Plus the time needed for 10

the recursive call of Max-
leapify on the child of

node 1. T(h) < {

T(h) < (h+ 1) - 0(1)
= O(h) = O(Ig n)

| = LEFT(i) OQ)

r = RIGHT(i) O(1)

if | < A.heap-size and A[l] > A[i] O(1)
largest = [O(1)

else largest =i O(1)

if r < A.heap-size and A[r] > Allargest] O(1)
largest = 1r O(1)

if largest #1 O(1)
exchange A[i| with A[largest] O(1)
MAX-HEAPIFY (A, largest) T(h — 1)

Tth—1)+0Q), if h>1
o) if h=0

Max-Heapify running time

MAX-HEAPIFY(A,i) T(h)

What is the cost of an 1
. . 2
execution of Max-Heapify?
4

All “standard” operations Z
can be done in O(1) time. 7
8

9

Plus the time needed for 10

the recursive call of Max-
leapify on the child of

| = LEFT(i) OQ)

r = RIGHT(i) O(1)

if [< A.heap-size and A[l] > Ali] O(1)
largest = [O(1)

else largest =i O(1)

if r < A.heap-size and A[r] > Allargest] O(1)
largest = 1r O(1)

if largest #1 O(1)
exchange A[i| with A[largest] O(1)
MAX-HEAPIFY (A, largest) T(h — 1)

node i. T < {T(h—_1)+0(1), if 7> 1
o) if h=0
I(h) < (h+1)-0O(1) Argument for Max-Heapify-

= O(h) = O(lgn) Up almost identical!

Max-Heap-Insert(A, v)
(without recursion)

e Max-Heap-Insert(A, v):
Insert a new element v to the heap.

Max-Heap-Insert(A, v)
1 A.heap-size = A.heap-size + 1
2 AlA.heap-size] = v
3 i = A.heap-size
4 while (i # 1 and A[i] > A[Parent(i)]) do
5 exchange A[i] with A[Parent(i)]
6 1 = Parent(i)

Priority Queues

Priority Queues

e Priority queue: A data structure that maintains

Priority Queues

e Priority queue: A data structure that maintains

e A set of elements S.

Priority Queues

e Priority queue: A data structure that maintains
e A set of elements .

e Each with an associated value, key(Vv).

Priority Queues

e Priority queue: A data structure that maintains

e A set of elements S.

e Each with an associated value, key(Vv).

* The values denote priorities.

Priority Queues

e Priority queue: A data structure that maintains

e A set of elements S.

e Each with an associated value, key(Vv).
* The values denote priorities.

 For Max-Priority Queues, the elements with the
largest values are those with the highest priority.

Priority Queues

Priority Queues

e Example: Scheduling processes on a computer.

Priority Queues

e Example: Scheduling processes on a computer.

 Each process has a priority or urgency.

Priority Queues

e Example: Scheduling processes on a computer.
 Each process has a priority or urgency.

e Processes don’t arrive in order of priorities.

Priority Queues

e Example: Scheduling processes on a computer.
 Each process has a priority or urgency.
e Processes don’t arrive in order of priorities.

e From the set of active processes, we need to find that
with the highest priority and run it.

Priority Queue Operations

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue.

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue.

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it).

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue.

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it).

e ExtractMax(Q) finds the element with the maximum
priority (highest value) in the priority queue, returns it, and
deletes it from the queue.

Implementing Priority
Queues

Implementing Priority
Queues

e Approach 1: Store the elements in an array/list. Also
maintain a pointer for the max element.

Implementing Priority
Queues

e Approach 1: Store the elements in an array/list. Also
maintain a pointer for the max element.

e How long does it take to find the max element?

Implementing Priority
Queues

e Approach 1: Store the elements in an array/list. Also
maintain a pointer for the max element.

e How long does it take to find the max element?

o O(1)

Implementing Priority
Queues

e Approach 1: Store the elements in an array/list. Also
maintain a pointer for the max element.

e How long does it take to find the max element?

o O(1)

* How long does it take to insert a new element?

Implementing Priority
Queues

e Approach 1: Store the elements in an array/list. Also
maintain a pointer for the max element.

e How long does it take to find the max element?
* O(1)
* How long does it take to insert a new element?

* Need to update the max pointer, hence O(n).

Implementing Priority
Queues

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.

e How long does it take to find the max element?

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.

e How long does it take to find the max element?

» O(1)

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.

e How long does it take to find the max element?
* O(1)

e How long does it take to insert a new element?

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.

e How long does it take to find the max element?
* O(1)
e How long does it take to insert a new element?

* We need to find the right position to insert it in the array -
O(lg n) using binary search.

Implementing Priority
Queues

 Approach 2: Store the elements in a sorted array/list.
e How long does it take to find the max element?

e O(1)
e How long does it take to insert a new element?

* We need to find the right position to insert it in the array -
O(lg n) using binary search.

 We still need to insert it, which means moving all the later
elements one position to the right - O(n).

Implementing Priority
Queues

Implementing Priority
Queues

» Approach 3: Use a Max Heap.

Implementing Priority
Queues

» Approach 3: Use a Max Heap.

* How long does it take to find the max element?

Implementing Priority
Queues

» Approach 3: Use a Max Heap.

* How long does it take to find the max element?

. O(1)

Implementing Priority
Queues

» Approach 3: Use a Max Heap.

* How long does it take to find the max element?
* O(1)

e How long does it take to insert a new element?

Implementing Priority
Queues

» Approach 3: Use a Max Heap.

* How long does it take to find the max element?
* O(1)
e How long does it take to insert a new element?

e O(lgn) via Max-Heap-Insert.

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue.

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it).

e ExtractMax(Q) finds the element with the maximum
priority (highest value) in the priority queue, returns it, and
deletes it from the queue.

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue. O(gn)

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it).

e ExtractMax(Q) finds the element with the maximum
priority (highest value) in the priority queue, returns it, and
deletes it from the queue.

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue. O(gn)

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it). 0O(1)

e ExtractMax(Q) finds the element with the maximum
priority (highest value) in the priority queue, returns it, and
deletes it from the queue.

Priority Queue Operations

e Insert(Q, v) inserts a new item v in the priority queue. O(gn)

e FindMax(Q) finds the element with the maximum priority
(the highest value) in the priority queue and returns it (but
does not remove it). 0O(1)

e ExtractMax(Q) finds the element with the maximum
priority (highest value) in the priority queue, returns it, and
deletes it from the queue. O(gn)

Max-heaps notes

e Python heapq library.

 They use Min-heaps rather than Max-heaps
e So do Roughgarden and KT.

e Arrays indexed from O (these slides and CLRS/KT index from
1).

e Names of operations are different

e e.g., Their heapify is basically our Build-Max-Heap, our
Max-Heapify is part of their Heapop (which is the
equivalent of our Max-Heap-Extract-Max).

Reading

e CLRS 6.5

e Notes: Uses max-heaps but presents the heap operations in the context
of priority queues first, using an additional increase key operation.

e KT 2.5.

e Notes: Very close to the exposition of these slides. Uses a min heap
rather than a max heap, and further implements a general delete
operation.

e Roughgarden 10.2, 10.5

e Notes: Uses a min heap rather than a max heap. The operation heapify
builds a heap from scratch, so it is like Build-Min-Heap. The operation
that restores an “almost” heap into a heap is part of ExtractMin.

